併用するスターティングデバイスの変遷
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/07/29 21:58 UTC 版)
「無段変速機」の記事における「併用するスターティングデバイスの変遷」の解説
初期のベルト式CVT車両には、発進・停止時の動力断続に遠心式や電磁式の自動クラッチが使われていた。これによりトルクコンバータ式におけるクリープ現象のデメリットを排除できるという特徴が生じた。しかし流体継手やトルクコンバータを使用しない代償としてクリープ現象のメリットも失われ、これらの自動クラッチにはマニュアルトランスミッション車の運転技術である「半クラッチ」に相当する機能・機構を必要とした。 クリープ現象を伴わないタイプのクラッチを持つCVT車は、ことに発進時、繊細なアクセル操作を行なわなければ、ぎくしゃくして円滑さに欠ける車両挙動を示した。富士重工業ではより滑らかな作動を求め、オランダのVDT社との共同開発で密閉容器内の鉄粉の流動性を磁力でコントロールする電子制御式電磁クラッチを使うECVTを開発したが、それでもこの問題の解決には至らなかった。富士重工の初期のECVT車では、特に商用モデルでの過負荷状態で電磁クラッチを破損させる事態が頻出し、クレーム扱いの保証修理を多発させてもいる。本田技研工業は変速機の出力側に湿式多板クラッチを配置し、これを電子制御することで疑似クリープ現象を得るというシステムを開発したが、同社の独自技術で広く普及するまでには至らなかった。 自動クラッチ式は普及せず、1990年代後半以降は発進・停止時の動力断続をロックアップ付のトルクコンバータに委ねる手法が主流になった。トルクコンバータを採用することでクリープ現象を得ることができ、おなじくトルクコンバータを採用する他のオートマチックトランスミッション車に運転感覚が近づいた。クリープ現象を得ることに着目すれば流体継手でも事足りるが、トルクコンバーターにはスリップ時のトルク増幅作用があり、スターティングデバイスとしてのメリットが大きい。トルク増幅作用を前提とすることで、発進に必要な駆動力を発生するためのトランスミッションの最大変速比を小さくすることができる。ギアレシオをハイレシオ化することで、巡航時のエンジン回転数を低くすることができ、低燃費化に有効である。但し小型自動二輪車では、遠心式自動クラッチが今日でも常用されている。
※この「併用するスターティングデバイスの変遷」の解説は、「無段変速機」の解説の一部です。
「併用するスターティングデバイスの変遷」を含む「無段変速機」の記事については、「無段変速機」の概要を参照ください。
- 併用するスターティングデバイスの変遷のページへのリンク