イトカワ (小惑星) イトカワ (小惑星)の概要

イトカワ (小惑星)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2023/02/09 13:55 UTC 版)

イトカワ
(糸川)
25143 Itokawa
相模原市立博物館に展示された模型
仮符号・別名 1998 SF36
分類 地球近傍小惑星
(PHA)
軌道の種類 アポロ群
火星横断
発見
発見日 1998年9月26日
発見者 LINEAR
軌道要素と性質
元期:2012年9月30日 (JD 2,456,200.5)
軌道長半径 (a) 1.324 AU[1]
近日点距離 (q) 0.953 AU[1]
遠日点距離 (Q) 1.695 AU[1]
離心率 (e) 0.280[1]
公転周期 (P) 1.52 [1]
平均軌道速度 25.37 km/s
軌道傾斜角 (i) 1.622
近日点引数 (ω) 162.80 度
昇交点黄経 (Ω) 69.09 度
平均近点角 (M) 176.48 度
物理的性質
三軸径 535 × 294 × 209 (± 1) m[1]
直径 330 m
表面積 0.393 km2
体積 0.0184 ± 0.00092 km3[1]
質量 (3.510 ± 0.105)
×1010 kg[1]
平均密度 1.90 ± 0.13 g/cm3[1]
表面重力 0.07 - 0.1 mm/s2
脱出速度 ~0.0002 km/s
自転周期 12.1324 ± 0.0001時間[1]
スペクトル分類 S (IV)[1]
絶対等級 (H) 19.2
アルベド(反射能) 0.53
表面温度 ~206 K
Template (ノート 解説) ■Project

概要

イトカワは近日点が地球軌道の内側に入る、アポロ群の地球近傍小惑星である。地球軌道との最小距離が小さく、半径も160メートルあるため、潜在的に危険な小惑星 (PHA) にも分類されている。スペクトル型からS型小惑星に分類される[2]。日本の小惑星探査機工学実験宇宙機はやぶさ (MUSES-C)の目的地に選ばれ、2005年9月からの約1ヵ月半、はやぶさに搭載された可視光分光撮像カメラ、近赤外線分光器、レーザー高度計、蛍光X線分光器の4つの観測機器による詳細な探査が行われた。そして2005年11月には、イトカワ表面の岩石試料を採取して地球へ持ち帰るサンプルリターンを行うため、はやぶさは2度の着陸を行った[3]

イトカワは平均半径が約160メートル、長径500メートルあまりしかない小天体であり、これはこれまで惑星探査機が探査を行った中で最も小さな天体である[4]。はやぶさは2010年6月に地球へ帰還し、同年11月にははやぶさのカプセルコンテナ内にイトカワの微粒子が多数存在することが明らかとなり、その後イトカワの微粒子についての分析が進められている。

はやぶさによるイトカワの探査と地球へ持ち帰った試料から、これまで知られていなかった小さなサイズの小惑星について様々な知見がもたらされている。まずイトカワの質量と体積から考えて、内部の約40パーセントが空隙であると考えられ、イトカワは瓦礫を寄せ集めたようなラブルパイル天体であると考えられた。またイトカワの分光観測と岩石試料から、イトカワは普通コンドライトの中のLL4、LL5、LL6というタイプの隕石と同様の物質で構成されていることが判明した。そしてイトカワ表面の物質は宇宙風化を起こしていることが明らかとなり、地球上に落下する隕石の約8割を占める普通コンドライトの多くが、S型小惑星を起源とすることが明らかとなった。

また直径20キロメートル前後の母天体が大きな衝突によって破壊され、その瓦礫が再集積することによって現在のイトカワが形成されたと考えられること、重力が極めて弱いイトカワでは、表面の物質が惑星間空間に逃げ続けていると見られることなどが判明した。

発見とはやぶさの目的地に選定

イトカワは1998年9月26日アメリカニューメキシコ州ソコロマサチューセッツ工科大学リンカーン研究所地球接近小惑星研究プロジェクト (LINEAR) により発見された。発見後、 1998 SF36という仮符号が付けられ、軌道要素確定後に25143番小惑星とされた。

第三の候補

イトカワが発見された当時、日本宇宙科学研究所では、1995年8月に宇宙開発委員会で正式承認された小惑星探査機(工学実験宇宙機)はやぶさ(MUSES-C) の開発が進められていた。計画開始当初はMUSES-Cの探査対象である小惑星はネレウスとされ、打ち上げは2002年1月の予定であった。またネレウスのバックアップ天体として1989 MLが用意された[5]。しかし探査機の設計が進む中で重量的にネレウスに向かうことが困難であることが明らかとなったため、1999年8月にはバックアップ天体の1989 MLへ目的地が変更となり、打ち上げ時期も2002年7月へと変更された[6]

ところが2000年2月10日、宇宙科学研究所の科学衛星用ロケットであるM-Vロケット4号機の打ち上げが失敗した。失敗原因を分析し、対策を講じていく中で、MUSES-Cは予定通りに打ち上げを行うことが不可能であることが明らかとなった。MUSES-Cの目標天体であった1989 MLは、2002年7月の機会を逃すと次回打ち上げが可能となるのが5年後の2007年となってしまう。打ち上げが大きく延期されることにより、これまでMUSES-C計画を進めていくに際してアメリカと締結していた協力関係が維持できなくなり、アメリカが独自に小惑星探査機を打ち上げる方針に転換することも考えられることから、1989 MLをMUSES-Cの目標天体とすることは困難となった。そこで改めて候補天体を検討した結果、第3の候補として1998 SF36が、2002年11月から12月ないしは2003年5月の打ち上げでMUSES-Cが到達可能な小惑星として浮上してきた[7]

MUSES-Cの目標天体となる

1998 SF36がMUSES-Cの第3の目標天体として浮上する中で難題が持ち上がった。既にMUSES-Cの製作はかなり進行しており、推進剤タンクの製作も終了していた。MUSES-Cの目標天体であった1989 MLは1998 SF36と比べて到達に必要なエネルギー量が低く、1989 ML用に完成していたMUSES-Cの推進剤タンクの能力では1998 SF36に到達することが不可能であった[8]

MUSES-Cが1998 SF36に到達することが可能な手法について検討を進めていく中で、EDVEGA(Electric Delta-V Earth Gravity Assist)と命名されることになる、イオンエンジンと地球スイングバイを組み合わせた新たな軌道技法が編み出された[9]。スイングバイは探査機を天体に会合させ、その天体の引力を用いて探査機の進行方向の変換を行うとともに、天体の公転運動を利用して探査機の加速、減速を行う技法であるが、EDVEGAでは比推力が大きく、長時間をかけた加速に優れた能力を発揮するイオンエンジンを、探査機の軌道離心率を大きくするように噴射して軌道変更を行い、地球との軌道離心率の差という形でエネルギーを蓄え、地球との再会合時の経路角差によって生じる地球との相対速度からエネルギーを取り出す軌道技法である[10]

MUSES-CはEDVEGAを用いることにより、探査機重量に換算して25-30キログラムの軽量化がなされた形となり、1998 SF36へ向かうことが可能となった[11]。またEDVEGAを用いた軌道計画には他にも優れた点があった。まず太陽電池を用いて電力供給を行うMUSES-Cにとって、地球軌道近辺でイオンエンジンを駆動させながら軌道変更を行うことは、安定した電力供給を受けながらイオンエンジンを駆動せることが可能であるため都合が良かった[12]。そしてMUSES-Cの打ち上げは2002年11月から12月以外に2003年5月にもチャンスがあり、打ち上げ機会の複数化というメリットがあった。また打ち上げた地球へいったん戻ってくる特異軌道と呼ばれる軌道を取るため、地球脱出の速度が多少ずれても地球スイングバイの実施が可能である利点もあった[13]。こうして2000年7月の宇宙開発委員会で、MUSES-Cは第三の候補である1998 SF36を目指すことが決定された[14]

出発までの苦闘と1998 SF36の観測

MUSES-Cは1998 SF36を目指すことが決定したものの、出発までにまだまだ苦闘は続いた。まず問題となったのが北半球のアメリカユタ州の砂漠地帯に帰還する予定であったMUSES-Cの帰還カプセルであったが、1998 SF36の軌道傾斜角の関係上、南半球に帰還しなければならないようになった。アメリカとの協力関係を構築していく中で、アメリカユタ州への帰還時に全面的なバックアップを受ける予定であったものが、南半球への帰還が必要となった時点で協力関係の枠組みが崩れそうになった。結局アメリカ側との再協議が行われ、1998 SF36からのサンプルの10パーセントをアメリカ側に渡すという当初の約束をそのまま維持した上、MUSES-Cによる1998 SF36観測へのアメリカ側からの参加機会の確保や、1998 SF36からサンプルリターンされた試料の初期分析に携わる科学者やアドバイザーをアメリカ側からも受け入れる等の合意がなされ、協力関係は維持されることになった[15]

また2001年には地球に接近した1998 SF36の光学およびレーダー観測が行われた。その結果、1998 SF36は約300×600メートルの楕円形をしたS(IV)型の小惑星であり、自転周期は約12時間であることが判明した。MUSES-Cは小惑星にタッチダウンしてサンプル採集を行う探査機であるため、あまり小惑星の大きさが小さかったり、また自転周期が早すぎるとサンプル採集が困難となるが、1998 SF36の大きさと自転周期はサンプル採集に支障がないものと判断された[16]

一方、1998 SF36へ向かうMUSES-Cの製作は難航していた。特に小惑星と探査機との距離をレーザー光線で測定する、LIDARという機器の開発が難航した。また2002年4月に発生したMUSES-Cの高圧ガス系の気密を保つためのOリングという部品の破損事故の際、Oリング自体が仕様と異なる材質で作られていることが判明し、それらの対策に日時を要したため、2002年9月になって2002年12月のMUSES-Cの打ち上げは断念し、ラストチャンスである2003年5月に打ち上げられることが決定した[17]

イトカワと命名される

ゴールドストーン深宇宙通信施設およびアレシボ天文台によるレーダー観測データを元に作られたイトカワの3Dモデル

2003年5月9日、内之浦宇宙空間観測所からM-Vロケット5号機によってMUSES-Cは打ち上げられ、はやぶさと命名された[18]。打ち上げ後、はやぶさはEDVEGAを用いて1998 SF36を目指すため、5月末からイオンエンジンの運転を開始した[19]。そして宇宙科学研究所ははやぶさの目的地である1998 SF36に、日本のロケット開発の父・糸川英夫の名前を付けるよう命名権を持つ発見者のLINEARに依頼した。LINEARはこれを受けて国際天文学連合に提案、2003年8月6日に承認されて「ITOKAWA」と命名された[20]2004年5月19日には、はやぶさはEDVEGAによる地球スイングバイを成功させ、秒速30キロメートルから34キロメートルへと増速がなされ、予定通りイトカワへ向かう軌道に乗った[21]

しかしはやぶさの行程は順調なことばかりではなかった。2003年11月4日に発生した大規模な太陽フレアの影響で、はやぶさの太陽電池が劣化したことにより発電能力が低下したため、2005年6月の予定であったイトカワへの到着時期を3か月遅れの9月にせざるを得なくなった。そこではやぶさのイトカワ出発時期も2005年10月の予定から12月へと変更された[22]

2004年、イトカワは再び地球に接近し、プエルトリコアレシボ天文台電波望遠鏡によってレーダー観測が行われ、ジャガイモ状をした大まかな形状が明らかとなった[23]


注釈

  1. ^ ヨシノダイは相模原市の宇宙科学研究所相模原キャンパスがある地名から取った名称であるが、現在のところ正式に承認された地名ではなく、通称である。
  2. ^ 普通コンドライトは鉄の含有量が多い順に、H、L、LLの3タイプに分類される(松田、圦本共編、2008)。
  3. ^ コンドライトの中で最も変成度が低いものを3とし、4から6と数字が大きくなるに従って熱による変成が進んだタイプとなり、一方、3から1へと数字が小さくなるに従って水による変成が大きなものとなる(松田、圦本共編、2008)。なお、6よりも熱変成が進んだコンドライトを7をする場合もある(土山、2007)。
  4. ^ 後述のようにブラックボルダーはイトカワの経度0度とされ、イトカワの座標の基準となり、グリニッジとも呼ばれることになったが、ブラックボルダーもグリニッジも正式名称ではなく、通称である。
  5. ^ 藤原、はやぶさチーム(2006)によれば、イトカワ表面の反射率の差は10パーセントを越える。

出典

  1. ^ a b c d e f g h i j k l Akira Fujiwara, et al.,“The Rubble-Pile Asteroid Itokawa as Observed by Hayabusa”, Science, Vol. 312. no. 5778, pp. 1330 - 1334, June 2, 2006
  2. ^ a b 平田、中村(2007)p.167
  3. ^ 吉川(2007)pp.179-180
  4. ^ 平田、中村(2007)p.167、吉川(2007)p.180
  5. ^ 的川(2010)pp.28-29
  6. ^ 川口(1997)pp.99-101、中谷(2002)p.121、的川(2010)pp.28-31
  7. ^ 鶴田浩一郎、(2000)M-V事情2011年12月10日閲覧、中谷(2002)pp.121-122、川口ら(2011)pp.68-70
  8. ^ 川口(2011)p.70
  9. ^ 川口ら(2011)p.70
  10. ^ 荒川ら(2006)pp.148-163、川口ら(2011)pp.70-73
  11. ^ 川口淳一郎、(2003)はやぶさ特集:小惑星探査機「はやぶさ」の研究計画について2011年12月10日閲覧
  12. ^ 荒川ら(2006)p.148、川口ら(2011)pp.73-74
  13. ^ 川口ら(2011)pp.73-74
  14. ^ 的川(2010)p.32
  15. ^ 宇宙開発委員会(2001)宇宙開発委員会 計画・評価部会(第4回)議事録2011年12月10日閲覧
  16. ^ 宇宙開発委員会、(2001)宇宙開発委員会 計画・評価部会(第4回)議事録宇宙開発委員会、2011年12月10日閲覧、矢野創、2002年太陽系始原天体探査と宇宙生物学 生命の起源および進化学会2011年12月10日閲覧
  17. ^ 川口ら(2011)pp.75-77
  18. ^ 川口(2010)pp.32-38
  19. ^ 川口ら(2011)pp.81-85
  20. ^ JAXA、(2009) 小惑星「イトカワ」表面の地形名称に関する国際天文学連合(IAU)正式承認について 2011年12月10日閲覧
  21. ^ 川口(2010)pp.68-70、川口ら(2011)pp.89-90
  22. ^ 川口ら(2011)pp.88-89
  23. ^ JAXA、(2004)望遠鏡とレーダーで捉えた「はやぶさ」の目的地の姿2011年12月10日閲覧
  24. ^ 川口(2010)pp.71-73、川口ら(2011)pp.91-93
  25. ^ 吉田(2006)pp.239-240
  26. ^ 川口(2006)、川口(2010)p.74
  27. ^ 川口(2006)pp.215-225、藤原、はやぶさチーム(2006)pp.66-69
  28. ^ JAXA、(2005)「はやぶさ」のイトカワ近傍観測の成果について2011年12月10日閲覧
  29. ^ 吉田(2006)pp.215-225
  30. ^ 川口(2010)pp.87-91
  31. ^ 川口(2010)pp.89-91、川口ら(2011)pp.103-104
  32. ^ 川口(2010)pp.91-94、川口ら(2011)pp.104-106
  33. ^ 川口ら(2011)pp.106-111
  34. ^ 川口ら(2011)pp.111-115
  35. ^ 川口ら(2011)pp.111-122
  36. ^ 川口ら(2011)pp.117-135、pp.162-163
  37. ^ 高木ら(2011)p.54
  38. ^ 吉田(2006)p.240
  39. ^ 吉川真、(2008)宇宙科学の最前線 小惑星イトカワを探る その後の進展12011年12月10日閲覧、吉川真、(2008)宇宙科学の最前線 小惑星イトカワを探る その後の進展22011年12月10日閲覧
  40. ^ a b 出村ら、(2006)小惑星イトカワの形と自転軸2011年12月10日閲覧
  41. ^ 布施哲治、(2007)「はやぶさ」がとらえたイトカワ画像 イトカワの衛星サーベイ2011年12月10日閲覧
  42. ^ 北里宏平、(2007)Solid State Planetary Science Group Seminar 2007 first half2011年12月10日閲覧
  43. ^ a b 吉川真、(2008)宇宙科学の最前線 小惑星イトカワを探る その後の進展3 2011年12月10日閲覧
  44. ^ “「はやぶさ」が観測した小惑星イトカワ 二つの小惑星が合体か くびれの両側で密度の違い”. レスポンス. (2014年2月7日). http://response.jp/article/2014/02/07/216674.html 2014年2月16日閲覧。 
  45. ^ “The Anatomy of an Asteroid”. European Southern Observatory. (2014年2月5日). http://www.eso.org/public/news/eso1405/ 2014年2月16日閲覧。 
  46. ^ 日本質量分析学会、(2002)小惑星表面採集試料の初期分析チーム編成のための第一回分析competitionの結果報告2011年12月10日閲覧、東京大学大学院理学系研究科付属地殻化学実験施設、(2011)はやぶさが持ち帰った小惑星の微粒子を分析 希ガス同位体分析からわかったこと、pdfファイル2011年12月10日閲覧
  47. ^ 藤村彰夫、(2010)Jaxas32号 人類初の試料を扱うキュレーション設備、pdfファイル
  48. ^ 藤村、安部(2010)pp.211-212、安部、藤村(2011)pp.185-186
  49. ^ 安部、藤村(2011)p.187
  50. ^ 安部、藤村(2011)pp.187-188、中村智樹、野口高明、(2011)、惑星地質ニュース はやぶさの贈り物、イトカワ由来の微粒子の特徴について、pdfファイル2011年12月10日閲覧
  51. ^ 安部、藤村(2011)pp.189-190
  52. ^ 出村ら、(2006)小惑星イトカワの形と自転軸2011年12月10日閲覧、平田、中村(2007)p.167
  53. ^ 平田、中村(2007)p.168
  54. ^ a b 宮本英昭、(2007)「はやぶさ」がとらえたイトカワ画像 イトカワにおけるレゴリスの流動と分別2011年12月10日閲覧
  55. ^ 平田、中村(2007)p.168、宮本英昭、(2007)「はやぶさ」がとらえたイトカワ画像 イトカワにおけるレゴリスの流動と分別2011年12月10日閲覧
  56. ^ 平田、中村(2007)pp.168-169、宮本英昭、(2007)「はやぶさ」がとらえたイトカワ画像 イトカワにおけるレゴリスの流動と分別2011年12月10日閲覧、野口ら(2010)p.13
  57. ^ 平田、中村(2007)pp.168-169、藤原(2007)pp.180-181
  58. ^ 宮本英明、(2007)「はやぶさ」がとらえたイトカワ画像 イトカワにおけるレゴリスの流動と分別2011年12月10日閲覧、ISAS、(2007)微小重力地質学の幕明け 地滑りで進化する小惑星イトカワの表面2011年12月10日閲覧、平田、中村(2007)pp.164-166、pp.168-170
  59. ^ 宮本英明、(2007)「はやぶさ」がとらえたイトカワ画像 イトカワにおけるレゴリスの流動と分別2011年12月10日閲覧、ISAS、(2007)微小重力地質学の幕明け 地滑りで進化する小惑星イトカワの表面2011年12月10日閲覧、平田、中村(2007)pp.169-170
  60. ^ a b 道上達広、(2007)「はやぶさ」がとらえたイトカワ画像 ボルダーの分布2011年12月10日閲覧
  61. ^ a b c 中村、阿部、平田(2007)pp.221-223
  62. ^ a b 平田、中村(2007)p.171
  63. ^ 平田、中村(2007)pp.170-171、平田成、(2007)「はやぶさ」がとらえたイトカワ画像 イトカワの衝突クレーターを求めて2011年12月10日閲覧
  64. ^ 平田、中村(2007)pp.164-166、p.171、平田成、(2011)「はやぶさ」がとらえたイトカワ画像 イトカワの衝突クレーターを求めて2011年12月10日閲覧
  65. ^ 平田成、(2011)「はやぶさ」がとらえたイトカワ画像 イトカワの衝突クレーターを求めて2011年12月11日閲覧、中村、阿部、平田(2007)pp.221-223
  66. ^ 土山(2007)pp.183-185、渡部、井田、佐々木(2008)pp.135-138
  67. ^ 安部正真、(2011)宇宙科学の最前線 小天体研究を通した太陽系の理解2011年12月10日閲覧、野口ら(2010)p.17
  68. ^ 渡部、井田、佐々木(2008)pp.142-147、野口ら(2010)p.16
  69. ^ 野口ら(2010)p.16
  70. ^ 野口高明、平田成、(2011)「はやぶさ」がとらえたイトカワ画像 イトカワ表面のボルダーと隕石の組織を比較する2011年12月10日閲覧、吉川真、(2008)宇宙科学の最前線 小惑星イトカワを探る その後の進展22011年12月10日閲覧
  71. ^ 野口高明、平田成、(2007)「はやぶさ」がとらえたイトカワ画像 イトカワ表面のボルダーと隕石の組織を比較する2011年12月10日閲覧、野口ら(2010)pp.14-17
  72. ^ 野口高明、平田成、(2007)「はやぶさ」がとらえたイトカワ画像 イトカワ表面のボルダーと隕石の組織を比較する2011年12月10日閲覧、野口ら(2010)pp.18-19
  73. ^ 野口高明、平田成、(2007)「はやぶさ」がとらえたイトカワ画像 イトカワ表面のボルダーと隕石の組織を比較する2011年12月10日閲覧
  74. ^ a b c 石黒正晃、(2007)「はやぶさ」がとらえたイトカワ画像 イトカワ表面の色と反射率の多様性2011年12月10日閲覧、平田、中村(2007)pp.171-172
  75. ^ 石黒正晃(2007)「はやぶさ」がとらえたイトカワ画像 イトカワ表面の色と反射率の多様性2011年12月10日閲覧、平田、中村(2007)p.172
  76. ^ 安部、藤村(2011)p.189
  77. ^ a b c d 大阪大学、(2011)はやぶさサンプルの3次元構造 イトカワレゴリスの進化、pdfファイル2011年12月10日閲覧
  78. ^ a b 東北大学、大学共同利用機関法人高エネルギー加速器研究機構、(2011)放射光技術で解明した小惑星イトカワの形成の歴史、pdfファイル2011年12月10日閲覧
  79. ^ 北海道大学、(2011)小惑星探査機「はやぶさ」が持ち帰った小惑星微粒子を分析、pdfファイル2011年12月10日閲覧
  80. ^ 首都大学東京、(2011)小惑星イトカワから回収された粒子の中性子放射化分析、pdfファイル2011年12月10日閲覧
  81. ^ 大阪大学、(2011)はやぶさサンプルの3次元構造 イトカワレゴリスの進化、pdfファイル2011年12月10日閲覧、東北大学、大学共同利用機関法人高エネルギー加速器研究機構、(2011)放射光技術で解明した小惑星イトカワの形成の歴史、pdfファイル2011年12月10日閲覧、北海道大学、(2011)小惑星探査機「はやぶさ」が持ち帰った小惑星微粒子を分析、pdfファイル2011年12月10日閲覧
  82. ^ 東北大学、大学共同利用機関法人高エネルギー加速器研究機構、(2011)放射光技術で解明した小惑星イトカワ、pdfファイル2011年12月10日閲覧、北海道大学、(2011)小惑星探査機「はやぶさ」が持ち帰った小惑星微粒子を分析、pdfファイル2011年12月10日閲覧
  83. ^ a b JAXA(2011)イトカワ微粒子のこれまでの初期分析成果2011年12月30日閲覧
  84. ^ 茨城大学、(2011)Scienceに掲載された論文「イトカワ塵粒子の表面に観察された初期宇宙風化」の解説、pdfファイル2011年12月10日閲覧
  85. ^ a b c d 東京大学大学院理学系研究科付属地殻化学実験施設、(2011)はやぶさが持ち帰った小惑星の微粒子を分析 希ガス同位体分析からわかったこと、pdfファイル2011年12月10日閲覧
  86. ^ a b 東京大学大学院理学系研究科付属地殻化学実験施設、(2011)はやぶさが持ち帰った小惑星の微粒子を分析 希ガス同位体分析からわかったこと、pdfファイル2011年12月30日閲覧、JAXA(2011)イトカワ微粒子のこれまでの初期分析成果2011年12月30日閲覧
  87. ^ 中村、阿部、平田(2007)pp.218-219
  88. ^ 野口ら(2010)pp.18-19
  89. ^ a b JAXA、(2005)小惑星イトカワの軌道進化2011年12月10日閲覧
  90. ^ PHA Close Approaches To The Earth2011年12月10日閲覧、JAXA、(2005)小惑星イトカワの軌道進化2011年12月10日閲覧
  91. ^ 出村裕英、(2007)「はやぶさ」がとらえたイトカワ画像 イトカワの地名2011年12月11日閲覧
  92. ^ a b c d e f g h i j k l m n o p q JAXA、(2009)小惑星「イトカワ」地形名称に関する国際天文学連合(IAU)正式承認について2011年12月11日閲覧
  93. ^ Target: ItokawaUSGS
  94. ^ 出村ら、(2006)小惑星イトカワの形と自転軸2011年12月10日閲覧、川口(2010)p.82
  95. ^ JAXA、(2006)イトカワ着陸点名は「はやぶさポイント」に!着陸点の名称決まる
  96. ^ 藤原、はやぶさチーム(2006)p.67、JAXA、(2009)小惑星「イトカワ」地形名称に関する国際天文学連合(IAU)正式承認について2011年12月11日閲覧





英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「イトカワ (小惑星)」の関連用語

イトカワ (小惑星)のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



イトカワ (小惑星)のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのイトカワ (小惑星) (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS