接続 (微分幾何学) 接続 (微分幾何学)の概要

接続 (微分幾何学)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2023/12/18 09:18 UTC 版)

数学 > 幾何学 > 多様体論 > 微分幾何学 > 接続 (微分幾何学)

接続概念はゲージ理論チャーン・ヴェイユ理論で用いられる。特にチャーン・ヴェイユ理論の特殊ケースとして、曲面に関する古典的なガウス・ボンネの定理一般の偶数次元多様体に拡張するのに役立つ。

接続は元々はクリストッフェル並びにレヴィ-チヴィタリッチによって[1]リーマン多様体上に導入された概念(レヴィ-チヴィタ接続)であるが、一般のベクトルバンドル上の接続(Koszul接続[注 1])や主バンドルの接続(主接続)にも拡張され、さらに一般のファイバーバンドルの接続へと拡張された。ただし実際に研究が進んでいるのは、ベクトルバンドルとその主バンドルに対する接続概念である。

以下、本項では特に断りがない限り、多様体、関数、バンドル等は全てC級の場合を考える。よって紛れがなければ「C級」を省略して単に多様体、関数、バンドル等という。また特に断りがない限りベクトル空間は実数体上のものを考える。

概要

多様体M上のベクトル場YM上のに対し、Yに沿った「方向微分」を定義することを考える。ユークリッド空間における微分を参考にすると、

のように定義するのがよいように思えるが、多様体上ではは別の点なので、両者の差は意味も持たない。しかしまで「平行移動」できれば、平行移動の結果の差を取る事で「方向微分」を定義でき、これをYに沿った共変微分という。


逆にに沿った共変微分が定義できていれば、

が恒等的に成立している事をもって、Yに沿って平行と呼ぶことで平行の概念を定義できる。


このように平行移動と共変微分は実質的に同値な概念であり、多様体のベクトル場に対して平行移動・共変微分を定義できる構造を多様体(の接バンドル)の接続という。


接続概念から定まる平行移動により、(何ら構造が定義されていない)多様体では無関係なはずの点におけるベクトルにおけるベクトルと「接続」して関係づける事ができ、これが「接続」という用語の語源である[5]


上では接バンドルに対する接続を説明したが、より一般にベクトルバンドルの接続、あるいはさらに一般にファイバーバンドルの接続を考える事ができる。上述のように平行移動と共変微分は実質的に同値な概念なので、平行移動・共変微分のうち、定義しやすい方をもとにして接続概念を定義すればよい。

そこでベクトルバンドルの場合は共変微分を、一般のファイバーバンドルの場合は平行移動をベースにして接続概念を定義する。


接続によって定まるもう一つの重要概念として曲率があり、これはファイバーバンドルの「曲がり具合」を表している。特に接ベクトルバンドルの曲率は多様体それ自身の「曲がり具合」とみなせる。曲率概念は歴史的には3次元ユークリッド空間内の曲面に対して定義されたものだが、実は「外の空間」であるがなくても定義できる曲面に内在的な量である事が示されたので、これを一般のリーマン多様体(の接ベクトルバンドル)、さらには一般のファイバーバンドルに対して拡張したものである。多様体に内在的な量としてみなしたとき、曲率の幾何学的意味は、閉曲線に沿ってベクトルを一周平行移動したとき、もとのベクトルとどの程度ずれるかを測った量であるとみなせる。

ベクトルバンドルの接続

本節ではまずリーマン多様体の接続であるレヴィ-チヴィタ接続の定義を述べ、次により一般的なベクトルバンドルに対する接続の定義を述べる。

レヴィ-チヴィタ接続の定義

Mの部分多様体とし、M上の曲線とし、さらに上定義されたMのベクトル場とし(すなわち各時刻tに対し、を満たすとし)、

と定義する。ここでPrMの点c(t)における内の接平面(と自然に同一視可能なTc(t)M)への射影である。またXYM上のベクトル場とするとき、

と定義する。ここでは時刻0に点を通るX積分曲線である。実はこれらの量はMの内在的な量である事、すなわちからMに誘導されるリーマン計量(とその偏微分)のみから計算できる事が知られている。


具体的にはMに局所座標を取ると、以下のように書ける(アインシュタインの縮約で表記):

   where

そこでをリーマン多様体に内在的な値とみなしたものを考える事ができる。は以下の公理で特徴づけられる事が知られている:

定理 (リーマン幾何学の基本定理) ― M上のベクトル場の組にM上のベクトル場を対応させる汎関数で以下の5つの性質をすべて満たすものが唯一存在する[6][7]。このをレヴィ-チヴィタ接続といい、をレヴィ-チヴィタ接続から定まるYXによる共変微分という[8][9][10]

  1. (関数に関する左線形性)
  2. (実数に関する右線形性) 
  3.  (ライプニッツ則)
  4. (捻れなし)
  5. (計量との両立)

ここでXYZM上の任意の可微分なベクトル場であり、fgM上定義された任意の実数値C級関数であり、abは任意の実数であり、は点においてとなるベクトル場であり、fX方向微分であり、リー括弧英語版である。


を曲線上に制限したものとして定義できる。

ベクトルバンドルの接続の定義

を可微分多様体M上のベクトルバンドルとし(EMのいずれにもリーマン計量が入っているとは限らない)、Eの切断全体の集合とし、M上のベクトル場全体の集合とする。

ベクトルバンドルの接続は前述したレヴィ-チヴィタ接続の公理的特徴づけの5つの性質のうち3つを使って定義される。

定義 (ベクトルバンドルの接続) ― 関数

で以下の性質を満たすものをE上のKoszul接続[注 1]: Koszul connection[11][12]あるいは単に接続: connection)といい[13][14]を接続が定めるsX方向の共変微分という:

  1. (関数に関する左線形性)
  2. (実数に関する右線形性) 
  3.  (ライプニッツ則)

Mの接ベクトルバンドルTMの接続の事を特にアフィン接続: affine connection)という[15]

ここでXYM上の任意のベクトル場であり、ss1s2Eの任意の切断であり、abは実数であり、ff1f2M上定義された任意の実数値可微分関数であり、は点uにおいてとなるEの切断であり、fX方向微分である。

上述の定義から、一般のベクトルバンドルの接続もレヴィ-チヴィタ接続と同様、

という形で書ける。ここでMの局所座標であり、Eの局所的な基底である[注 2]。ただしもちろんレヴィ-チヴィタ接続と違いは計量で書けるとは限らない。


さらに以下の定義をする:

定義 ― 

リーマン幾何学の基本定理から、レヴィ-チヴィタ接続とは、唯一の計量と両立する捻れなしのアフィン接続として特徴づけられる。

曲線上の微分

Mの曲線上に切断が定義されているとき、接続の成分表示のを形式的にに置き換えた

を、曲線に沿った共変微分という。この定義は基底の取り方によらずwell-definedである。


出典

  1. ^ C.G. Ricci, T. Levi=Civita (1901), Méthodes de calcul differéntiel absolu et leurs applications (絶対微分学の方法とその応用)矢野(1971) 和訳pp.17-95
  2. ^ 板場綾子「自己移入的Koszul多元環に対する有限条件(Fg) (有限群のコホモロジー論とその周辺)」『数理解析研究所講究録』第2061巻、京都大学数理解析研究所、2018年4月、33頁、CRID 1050001202603941760hdl:2433/241849ISSN 1880-2818NAID 120006645349 
  3. ^ Koszul duality for factorization algebras and extended topological field theories”. 2023年10月19日閲覧。
  4. ^ 2020年度 幾何学 B アインシュタイン計量の幾何学 -リーマン幾何学入門とアインシュタイン計量の幾何学への応用-” (PDF). p. 75. 2023年10月19日閲覧。
  5. ^ #Spivak p.251. 「this possibility of comparing, or "connecting", tangent spaces at different points gives rise to the term "connection".」
  6. ^ #Andrews Lecture 10, p.2.
  7. ^ #Tu p.45.
  8. ^ #Andrews Lecture 8 p.74, Lecture 10 p.98.
  9. ^ #新井 p.304.
  10. ^ #Tu p.45.
  11. ^ #Spivak p.241.
  12. ^ José Figueroa-O'Farrill. “Lecture 5: Connections on principal and vector bundles”. PG course on Spin Geometry. p. 40. 2023年1月12日閲覧。
  13. ^ #森田 p.213.
  14. ^ #Tu p.72.
  15. ^ #小林 p.76.
  16. ^ #Tu p.75.
  17. ^ a b #Tu p.263.
  18. ^ #Tu p.113.
  19. ^ #Tu p.263.
  20. ^ #Spivak p.251.
  21. ^ #小林 p.38.
  22. ^ #Tu p.80.
  23. ^ #Spivak p.251.
  24. ^ #Tu p.256.
  25. ^ #Wendl3 p.73.
  26. ^ a b c d #Wendl3 p.74.
  27. ^ 「エーレスマン接続」という訳語は#佐古を参考にした。#佐古に目次にこの名称が確認できる。
  28. ^ #Epstein p.95.
  29. ^ #Tu p.256.
  30. ^ Ehresmann connection”. nLab. 2023年8月30日閲覧。
  31. ^ #Kolar p.80.
  32. ^ #Kolar p.99.
  33. ^ #Kolar p.81.
  34. ^ #Tuynman p.345.
  35. ^ #Wendl3 p.75.
  36. ^ #Wendl3 pp.76-78.
  37. ^ #Kolar p.110.
  38. ^ #Wendl3 p.78.
  39. ^ #Wendl3 p.89.
  40. ^ #Tu p.247.
  41. ^ #Wendl3 p.89.
  42. ^ #Kolar p.100.
  43. ^ #Tu pp.255-256
  44. ^ #小林 p.61.
  45. ^ #Wendl3 p.90.なお本文献のみ「」ではなく「」になっているが、前後関係から「」の誤記と判断。
  46. ^ #Tu p.123.
  47. ^ #Salamon p.5.
  48. ^ #Wendl3 p.83.
  49. ^ #Pasquotto p.84.にこの定理のアフィン接続が述べられており、Koszul接続の場合も同様である旨が書いてある。このKoszul接続の場合は他の文献の記述からも従う。実際、の場合に1:1対応する事は#森田 pp.319-321従い、この場合にとなる事は#Tu p.268から従う。そしてGの部分リー群である場合に関しては#Kobayashi-Nomizu1 p.83のRemarkより-主バンドル上の接続形式がG-主バンドルにreduceする必要十分条件はωGのリー代数に値を取る事であるので、上記の事実から従う。
  50. ^ #Kobayashi-Nomizu-1 p.127.
  51. ^ a b #Wendl5 p.121.
  52. ^ #Kolar p.77.
  53. ^ #Tu p.49
  54. ^ #Tu p.56,58
  55. ^ #Wendl5 pp.119,121.
  56. ^ a b #Kolar pp.100-101.
  57. ^ #Tu p.270
  58. ^ a b #森田 p.302.
  59. ^ #小林 p.43.
  60. ^ #小林 p.43.
  61. ^ #Tu p.80
  62. ^ #Wendl5 p.123.
  63. ^ #Tu p.270.
  64. ^ a b c d e f #Kolar pp.82-83.
  65. ^ Freeman 2011.
  66. ^ 日本数学会編 2007.
  67. ^ Christoffel 1869.
  68. ^ Levi-Civita 1900.
  69. ^ Levi-Civita 1916.
  70. ^ Weyl 1918.
  71. ^ Cartan 1926.
  72. ^ Ehresmann 1950.
  73. ^ Koszul 1950.

注釈

  1. ^ a b 人名「Koszul」を「コシュール」と訳している文献[2][3][4]があるため、「コシュール接続」と読むと思われるが、「コシュール接続」と訳した文献を発見できなかったので本項では「Koszul接続」と表記した。なお、Wikipediaの英語版には「フランス語: [kɔsyl]」とある。
  2. ^ 接続M全域で定義されたベクトル場と切断に関するものなので、このような局所的に定義された座標で表示できるか否かは非自明である。しかしが「局所演算子」という性質を満たすことにより、局所的な座標で表示可能な事を示すことができる。詳細は接続 (ベクトル束)の項目を参照されたい。
  3. ^ 成分接続形式といい、ω接続行列: connection matrix)と呼ぶ場合もある[22]
  4. ^ 厳密には以下の通りである。Mの曲線に沿って定義された局所的な基底を考え、に沿って平行移動したものをとして行列 により定義すると、接続形式の定義より、 が成立する。ここでは成分ごとの微分の事である。 が計量と両立すれば、は正規直交基底である。よって が正規直交基底であれば、よりは回転変換であり、の微分は歪対称行列である。
  5. ^ ここでπ(e)のファイバーの点eにおける接空間であり、包含写像が誘導する写像によりTeEの部分空間とみなしている。
  6. ^ a b この「eに関してC級である」というのを厳密に定式化する方法は(同値な方法が)いくつかあるが、一つの方法は上のファイバーとするTEの部分ベクトルバンドルとみなし、TEC級の部分ベクトルバンドルである事を要請するというものである。
  7. ^ 垂直部分空間の定義よりであるが、はベクトル空間なので、と接空間は自然に同一視できる。
  8. ^ なお 、#Salamonではの(標準的とは限らない)基底からへの線形写像fと自然に同一視し、各に対し、
    Gに属する事を持ってG-フレームを定義しているが、この定義は本項で述べたものと同値である。
  9. ^ #Wendl3の定義は若干曖昧で単に「十分短い曲線」(sufficiently short path)に沿った平行移動がGと両立する自明化(G-compatible connection) for を持つとしか言っていないが、局所自明化可能な領域内の曲線がこのように書ければ十分なので、ここではそのように定義した。
  10. ^ a b ここで-線形であるとは、通常の線形性を満たすのみならず関数fに対してを満たす事を指す[53]-線形である事は、の各点における値がξηの点eにおける値ξeηeのみで決まること、すなわちΩが各点における双線形写像のテンソル場とみなせる事と同値である事が知られている[54]
  11. ^ #Kolarにおける曲率の定義はここに書いたものと符号が反対だが、#Kolar p.73.にあるように#Kolarの定義だと「通常の曲率と符号が反対」になるので、#Wendl5 p.121の方の符号を採用した。
  12. ^ #Kolar p.100-101.のみ右辺第二項はとなっているが、これは#Kolarの間違いであると判断した。実際#Kolar p.100の一番下にあるの定義式にを代入するととなり、とはならない。またこの#Kolar p.100の一番下の係数#森田の1巻のp.95.ではになっているため、#Kolarの定義式を間違えた可能性が高い。#Tu p.285も参照。
  13. ^ これはFreeman[65]の立場。ほかには、たとえば岩波数学辞典は後出のレヴィ=チヴィタによる平行移動の発見を接続の概念のはじまりとしている[66]
  14. ^ 正確には、現在の言葉でいう捩れのないアフィン接続。





英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  
  •  接続 (微分幾何学)のページへのリンク

辞書ショートカット

すべての辞書の索引

「接続 (微分幾何学)」の関連用語

接続 (微分幾何学)のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



接続 (微分幾何学)のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの接続 (微分幾何学) (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS