接続 (微分幾何学) 曲率

接続 (微分幾何学)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2023/12/18 09:18 UTC 版)

曲率

一般のファイバーバンドルの曲率

ファイバーバンドル接続(: connection)が与えられているとき、Eの接ベクトル空間はと分解できた。そこで

をそれぞれ垂直部分空間、水平部分空間への射影とする。曲率概念はこのVeHeを使って定義する:

定義 (ファイバーバンドルの曲率形式) ― E上のベクトル場ξηに対し、

をファイバーバンドルEの接続に関する曲率形式という[51]

ここでリー括弧英語版である。Ω-線形であり[51][52][注 10][注 11]、よってΩは双線形写像

であるとみなせる[注 10]

フロベニウスの定理を用いると、曲率形式が恒等的に0である事は超平面の族可積分である事と同値である事を示せる[55]。したがって曲率形式は水平部分空間 が可積分ではない度合いを表す量である

主接続の曲率

本節では、主接続の場合に対し、上記で定義した曲率形式をリー代数の言葉で書き換える。Gをリー群とし、Gのリー代数とし、さらにG-主バンドルとし、ωPの主接続とする。リー代数におけるリー括弧を使って

と定義し[56]、さらに前の章と同様、リー代数の元に基本ベクトル場を対応させる写像

を考える。紛れがなければ添字pを省略し単にζと書く。

定理 (主バンドルの接続の曲率) ― 曲率形式Ωは以下を満たす[57][58][56][注 12]

  • 構造方程式[58]

紛れがなければを単にΩと書き、接続形式ω曲率形式という。

ベクトルバンドルの接続の曲率

定義

Koszul接続が定義されたベクトルバンドルの曲率を以下のように定義する:

定義・定理 (曲率) ―  ベクトルバンドルの接続に対し、

for

に関する曲率: curvature)もしくは曲率テンソル: curvature tensor)という[59]

RXYsに関して-線形であり[60]、よってRは各点に対し、

を対応させるテンソル場とみなせる。


さらにKoszul接続の曲率形式を以下のように定義する:

定義 ― UMの開集合とし、Uにおけるフレームバンドルの切断とする。このとき、曲率テンソルを

と成分表示し、とすると、Ωeは一般線形群のリー代数 に値を取る2-形式とみなせる。 eに関するKoszul接続曲率形式: curvature form)という[61]

一般の接続の曲率形式との関係

すでに述べたようにベクトルバンドル上のKoszul接続には、それと対応するファイバーバンドルとしての接続が定義可能であるが、上述したKoszul接続の曲率は前述した一般のファイバーバンドルの曲率形式と以下の関係を満たす。ここでHは水平部分空間への射影である。

定理 ― 記号を上述のように取る。このとき、M上の点u、ベクトルに対し、以下が成立する[62]

よって特にKoszul接続の曲率形式とは以下の関係を満たす:

ここでであり、はその双対基底である。

主接続の曲率との関係

のフレームバンドルの曲率形式とKoszul接続の曲率形式は以下の関係を満たす:

定理 ― ベクトルバンドルのフレームバンドルに接続形式がωの接続が定義されているとし、この接続の曲率形式をΩとする。

さらにこの接続がEに誘導する接続が定義するKoszul接続をとし、Mの開集合U上定義されたの切断とし、eに関する曲率形式とする。このとき、以下が成立する[63]


出典

  1. ^ C.G. Ricci, T. Levi=Civita (1901), Méthodes de calcul differéntiel absolu et leurs applications (絶対微分学の方法とその応用)矢野(1971) 和訳pp.17-95
  2. ^ 板場綾子「自己移入的Koszul多元環に対する有限条件(Fg) (有限群のコホモロジー論とその周辺)」『数理解析研究所講究録』第2061巻、京都大学数理解析研究所、2018年4月、33頁、CRID 1050001202603941760hdl:2433/241849ISSN 1880-2818NAID 120006645349 
  3. ^ Koszul duality for factorization algebras and extended topological field theories”. 2023年10月19日閲覧。
  4. ^ 2020年度 幾何学 B アインシュタイン計量の幾何学 -リーマン幾何学入門とアインシュタイン計量の幾何学への応用-” (PDF). p. 75. 2023年10月19日閲覧。
  5. ^ #Spivak p.251. 「this possibility of comparing, or "connecting", tangent spaces at different points gives rise to the term "connection".」
  6. ^ #Andrews Lecture 10, p.2.
  7. ^ #Tu p.45.
  8. ^ #Andrews Lecture 8 p.74, Lecture 10 p.98.
  9. ^ #新井 p.304.
  10. ^ #Tu p.45.
  11. ^ #Spivak p.241.
  12. ^ José Figueroa-O'Farrill. “Lecture 5: Connections on principal and vector bundles”. PG course on Spin Geometry. p. 40. 2023年1月12日閲覧。
  13. ^ #森田 p.213.
  14. ^ #Tu p.72.
  15. ^ #小林 p.76.
  16. ^ #Tu p.75.
  17. ^ a b #Tu p.263.
  18. ^ #Tu p.113.
  19. ^ #Tu p.263.
  20. ^ #Spivak p.251.
  21. ^ #小林 p.38.
  22. ^ #Tu p.80.
  23. ^ #Spivak p.251.
  24. ^ #Tu p.256.
  25. ^ #Wendl3 p.73.
  26. ^ a b c d #Wendl3 p.74.
  27. ^ 「エーレスマン接続」という訳語は#佐古を参考にした。#佐古に目次にこの名称が確認できる。
  28. ^ #Epstein p.95.
  29. ^ #Tu p.256.
  30. ^ Ehresmann connection”. nLab. 2023年8月30日閲覧。
  31. ^ #Kolar p.80.
  32. ^ #Kolar p.99.
  33. ^ #Kolar p.81.
  34. ^ #Tuynman p.345.
  35. ^ #Wendl3 p.75.
  36. ^ #Wendl3 pp.76-78.
  37. ^ #Kolar p.110.
  38. ^ #Wendl3 p.78.
  39. ^ #Wendl3 p.89.
  40. ^ #Tu p.247.
  41. ^ #Wendl3 p.89.
  42. ^ #Kolar p.100.
  43. ^ #Tu pp.255-256
  44. ^ #小林 p.61.
  45. ^ #Wendl3 p.90.なお本文献のみ「」ではなく「」になっているが、前後関係から「」の誤記と判断。
  46. ^ #Tu p.123.
  47. ^ #Salamon p.5.
  48. ^ #Wendl3 p.83.
  49. ^ #Pasquotto p.84.にこの定理のアフィン接続が述べられており、Koszul接続の場合も同様である旨が書いてある。このKoszul接続の場合は他の文献の記述からも従う。実際、の場合に1:1対応する事は#森田 pp.319-321従い、この場合にとなる事は#Tu p.268から従う。そしてGの部分リー群である場合に関しては#Kobayashi-Nomizu1 p.83のRemarkより-主バンドル上の接続形式がG-主バンドルにreduceする必要十分条件はωGのリー代数に値を取る事であるので、上記の事実から従う。
  50. ^ #Kobayashi-Nomizu-1 p.127.
  51. ^ a b #Wendl5 p.121.
  52. ^ #Kolar p.77.
  53. ^ #Tu p.49
  54. ^ #Tu p.56,58
  55. ^ #Wendl5 pp.119,121.
  56. ^ a b #Kolar pp.100-101.
  57. ^ #Tu p.270
  58. ^ a b #森田 p.302.
  59. ^ #小林 p.43.
  60. ^ #小林 p.43.
  61. ^ #Tu p.80
  62. ^ #Wendl5 p.123.
  63. ^ #Tu p.270.
  64. ^ a b c d e f #Kolar pp.82-83.
  65. ^ Freeman 2011.
  66. ^ 日本数学会編 2007.
  67. ^ Christoffel 1869.
  68. ^ Levi-Civita 1900.
  69. ^ Levi-Civita 1916.
  70. ^ Weyl 1918.
  71. ^ Cartan 1926.
  72. ^ Ehresmann 1950.
  73. ^ Koszul 1950.

注釈

  1. ^ a b 人名「Koszul」を「コシュール」と訳している文献[2][3][4]があるため、「コシュール接続」と読むと思われるが、「コシュール接続」と訳した文献を発見できなかったので本項では「Koszul接続」と表記した。なお、Wikipediaの英語版には「フランス語: [kɔsyl]」とある。
  2. ^ 接続M全域で定義されたベクトル場と切断に関するものなので、このような局所的に定義された座標で表示できるか否かは非自明である。しかしが「局所演算子」という性質を満たすことにより、局所的な座標で表示可能な事を示すことができる。詳細は接続 (ベクトル束)の項目を参照されたい。
  3. ^ 成分接続形式といい、ω接続行列: connection matrix)と呼ぶ場合もある[22]
  4. ^ 厳密には以下の通りである。Mの曲線に沿って定義された局所的な基底を考え、に沿って平行移動したものをとして行列 により定義すると、接続形式の定義より、 が成立する。ここでは成分ごとの微分の事である。 が計量と両立すれば、は正規直交基底である。よって が正規直交基底であれば、よりは回転変換であり、の微分は歪対称行列である。
  5. ^ ここでπ(e)のファイバーの点eにおける接空間であり、包含写像が誘導する写像によりTeEの部分空間とみなしている。
  6. ^ a b この「eに関してC級である」というのを厳密に定式化する方法は(同値な方法が)いくつかあるが、一つの方法は上のファイバーとするTEの部分ベクトルバンドルとみなし、TEC級の部分ベクトルバンドルである事を要請するというものである。
  7. ^ 垂直部分空間の定義よりであるが、はベクトル空間なので、と接空間は自然に同一視できる。
  8. ^ なお 、#Salamonではの(標準的とは限らない)基底からへの線形写像fと自然に同一視し、各に対し、
    Gに属する事を持ってG-フレームを定義しているが、この定義は本項で述べたものと同値である。
  9. ^ #Wendl3の定義は若干曖昧で単に「十分短い曲線」(sufficiently short path)に沿った平行移動がGと両立する自明化(G-compatible connection) for を持つとしか言っていないが、局所自明化可能な領域内の曲線がこのように書ければ十分なので、ここではそのように定義した。
  10. ^ a b ここで-線形であるとは、通常の線形性を満たすのみならず関数fに対してを満たす事を指す[53]-線形である事は、の各点における値がξηの点eにおける値ξeηeのみで決まること、すなわちΩが各点における双線形写像のテンソル場とみなせる事と同値である事が知られている[54]
  11. ^ #Kolarにおける曲率の定義はここに書いたものと符号が反対だが、#Kolar p.73.にあるように#Kolarの定義だと「通常の曲率と符号が反対」になるので、#Wendl5 p.121の方の符号を採用した。
  12. ^ #Kolar p.100-101.のみ右辺第二項はとなっているが、これは#Kolarの間違いであると判断した。実際#Kolar p.100の一番下にあるの定義式にを代入するととなり、とはならない。またこの#Kolar p.100の一番下の係数#森田の1巻のp.95.ではになっているため、#Kolarの定義式を間違えた可能性が高い。#Tu p.285も参照。
  13. ^ これはFreeman[65]の立場。ほかには、たとえば岩波数学辞典は後出のレヴィ=チヴィタによる平行移動の発見を接続の概念のはじまりとしている[66]
  14. ^ 正確には、現在の言葉でいう捩れのないアフィン接続。





英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  
  •  接続 (微分幾何学)のページへのリンク

辞書ショートカット

すべての辞書の索引

「接続 (微分幾何学)」の関連用語

接続 (微分幾何学)のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



接続 (微分幾何学)のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの接続 (微分幾何学) (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS