接続 (微分幾何学) ベクトルバンドルの接続と主バンドルの接続の関係性

Weblio 辞書 > 辞書・百科事典 > 百科事典 > 接続 (微分幾何学)の解説 > ベクトルバンドルの接続と主バンドルの接続の関係性 

接続 (微分幾何学)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2023/12/18 09:18 UTC 版)

ベクトルバンドルの接続と主バンドルの接続の関係性

本節では接続形式の章で述べたアイデアに基づいて、ベクトルバンドルの接続(Koszul接続)と主バンドルの接続(主接続)の関係を述べる。

接続形式の章で見たのケースだけでなくの部分リー群Gに対して両者の関係性を示すため、本章ではまず「G-フレーム」、および「G-フレームバンドル英語版」という概念を導入する。「G-フレーム」はGの場合は正規直交基底に相当するものであり、G-フレームバンドルはG-フレームを束ねてできるバンドルであり、自然にG-主バンドルとみなせる。

次に本章ではEのフレームバンドル上の接続からEのKoszul接続が定まる事を見る。そして構造群Gを持つベクトルバンドルの接続がGと「両立する」事を定義し、最後にG-フレームバンドルの接続の接続形式とベクトルバンドルのGと両立する接続の接続形式が1対1の関係にある事を見る。

フレームバンドル

定義

G-フレーム」とは正規直交基底の概念を一般化したもので、Gの場合、G-フレームが正規直交基底に相当する。

定義 ― Gの部分リー群とし、を構造群Gを持つベクトルバンドルとし、uMの点とし、Euの基底とする。EuにおけるG-フレーム: G-flame)であるとは、Euにおけるバンドルチャートが存在し、このバンドルチャート上で

が成立する事を言う。

ここでの標準的な基底であり、は線形変換eiに作用させたものである。

構造群Gを持つベクトルバンドルの定義から、G-フレームの定義はバンドルチャートの取り方によらずwell-definedである。


上のG-フレーム全体の集合とすると、

は自然にM上のG-主バンドルをなし、を構造群Gに関するフレームバンドルという[47][注 8]

主接続からKoszul接続の誘導

Gを構造群を持つベクトルバンドルとし、をそのフレームバンドルとする。さらにG-主バンドルに接続形式がの接続が入っているとする。開集合上定義されたEの局所的な基底に対し、

を、eUからFG(E)への写像と見たときの接続形式ωUへの引き戻しとし、と成分表示する。

定理・定理 ―  記号を上述のように取る。Eの切断sM上のベクトル場Xに対し、

と微分演算子を定義すると、は局所的な基底の取り方によらずwell-definedで、しかもはKoszul接続の公理を満たす。から誘導される接続という。

構造群と接続の両立

Gの部分リー群とする。構造群Gを持つベクトルバンドルの接続(Koszul接続)がGと両立する事を以下のように定義する。直観的には平行移動がGの元で書ける事を意味する:

定義 (構造群と両立するKoszul接続) ― Mを連結な多様体とし、Gの閉部分リー群とし、を構造群Gを持つベクトルバンドルとし、のKoszul接続とする。このとき、Gと両立する: G-compatible)とは、の任意の局所自明化

where open、 open

に対し、U内の任意の曲線に沿った平行移動Gに属する線形変換である事を言う[48][注 9]

定義より明らかに以下が従う:

定義 ― を構造群Gを持つベクトルバンドルとする。このとき、G-フレームバンドル上の接続形式から誘導されたEの接続はGと両立する。

接続がGと両立する事は、接続形式がGのリー代数に入っている事と同値である:

定義 (Gと両立するKoszul接続) ― E上定義されたKoszul接続とし、をその接続形式とする。Gと両立する必要十分条件は、任意の局所的な基底に対し、

が成立する事を言う。

接続形式の章では平行移動が常にの元で表せるときに接続形式がのリー代数に入っている事を示したが、上記の定理はこの事実をの任意の部分リー群に対して示したものである。

ベクトルバンドルの接続から主接続の接続へ

Gと両立する接続はフレームバンドルの接続に対応している:

定理 ― Gを構造群として持つベクトルバンドルのKoszul接続Gと両立するとき、フレームバンドルFG(E)のある接続形式ωが存在し、ωからEに誘導される接続と一致する。

本章の成果をまとめると、以下の結論が得られる:

定義 (主接続とKoszul接続の関係) ― E上のKoszul接続でGと両立するものはの主接続と1 : 1で対応する。 さらにGと両立するにKoszul接続に対応する主接続の接続形式をωとすると、任意の開集合U上で定義されたの任意の局所的な切断に対し、

が成立する。ここでを局所的な基底とみなしたときのeに関するの接続形式であり、eUからFG(E)への写像と見たときの接続形式ωUへの引き戻しである[49]

共変微分の対応関係

ベクトルバンドルの切断sが与えられたとき、上の関数

, where

を定義できる。このとき次が成立する:

定理 ― M上の任意のベクトル場Xに対し、以下が成立する[50]

ここで上のベクトル場により上の値関数の各成分を微分したの事である。


出典

  1. ^ C.G. Ricci, T. Levi=Civita (1901), Méthodes de calcul differéntiel absolu et leurs applications (絶対微分学の方法とその応用)矢野(1971) 和訳pp.17-95
  2. ^ 板場綾子「自己移入的Koszul多元環に対する有限条件(Fg) (有限群のコホモロジー論とその周辺)」『数理解析研究所講究録』第2061巻、京都大学数理解析研究所、2018年4月、33頁、CRID 1050001202603941760hdl:2433/241849ISSN 1880-2818NAID 120006645349 
  3. ^ Koszul duality for factorization algebras and extended topological field theories”. 2023年10月19日閲覧。
  4. ^ 2020年度 幾何学 B アインシュタイン計量の幾何学 -リーマン幾何学入門とアインシュタイン計量の幾何学への応用-” (PDF). p. 75. 2023年10月19日閲覧。
  5. ^ #Spivak p.251. 「this possibility of comparing, or "connecting", tangent spaces at different points gives rise to the term "connection".」
  6. ^ #Andrews Lecture 10, p.2.
  7. ^ #Tu p.45.
  8. ^ #Andrews Lecture 8 p.74, Lecture 10 p.98.
  9. ^ #新井 p.304.
  10. ^ #Tu p.45.
  11. ^ #Spivak p.241.
  12. ^ José Figueroa-O'Farrill. “Lecture 5: Connections on principal and vector bundles”. PG course on Spin Geometry. p. 40. 2023年1月12日閲覧。
  13. ^ #森田 p.213.
  14. ^ #Tu p.72.
  15. ^ #小林 p.76.
  16. ^ #Tu p.75.
  17. ^ a b #Tu p.263.
  18. ^ #Tu p.113.
  19. ^ #Tu p.263.
  20. ^ #Spivak p.251.
  21. ^ #小林 p.38.
  22. ^ #Tu p.80.
  23. ^ #Spivak p.251.
  24. ^ #Tu p.256.
  25. ^ #Wendl3 p.73.
  26. ^ a b c d #Wendl3 p.74.
  27. ^ 「エーレスマン接続」という訳語は#佐古を参考にした。#佐古に目次にこの名称が確認できる。
  28. ^ #Epstein p.95.
  29. ^ #Tu p.256.
  30. ^ Ehresmann connection”. nLab. 2023年8月30日閲覧。
  31. ^ #Kolar p.80.
  32. ^ #Kolar p.99.
  33. ^ #Kolar p.81.
  34. ^ #Tuynman p.345.
  35. ^ #Wendl3 p.75.
  36. ^ #Wendl3 pp.76-78.
  37. ^ #Kolar p.110.
  38. ^ #Wendl3 p.78.
  39. ^ #Wendl3 p.89.
  40. ^ #Tu p.247.
  41. ^ #Wendl3 p.89.
  42. ^ #Kolar p.100.
  43. ^ #Tu pp.255-256
  44. ^ #小林 p.61.
  45. ^ #Wendl3 p.90.なお本文献のみ「」ではなく「」になっているが、前後関係から「」の誤記と判断。
  46. ^ #Tu p.123.
  47. ^ #Salamon p.5.
  48. ^ #Wendl3 p.83.
  49. ^ #Pasquotto p.84.にこの定理のアフィン接続が述べられており、Koszul接続の場合も同様である旨が書いてある。このKoszul接続の場合は他の文献の記述からも従う。実際、の場合に1:1対応する事は#森田 pp.319-321従い、この場合にとなる事は#Tu p.268から従う。そしてGの部分リー群である場合に関しては#Kobayashi-Nomizu1 p.83のRemarkより-主バンドル上の接続形式がG-主バンドルにreduceする必要十分条件はωGのリー代数に値を取る事であるので、上記の事実から従う。
  50. ^ #Kobayashi-Nomizu-1 p.127.
  51. ^ a b #Wendl5 p.121.
  52. ^ #Kolar p.77.
  53. ^ #Tu p.49
  54. ^ #Tu p.56,58
  55. ^ #Wendl5 pp.119,121.
  56. ^ a b #Kolar pp.100-101.
  57. ^ #Tu p.270
  58. ^ a b #森田 p.302.
  59. ^ #小林 p.43.
  60. ^ #小林 p.43.
  61. ^ #Tu p.80
  62. ^ #Wendl5 p.123.
  63. ^ #Tu p.270.
  64. ^ a b c d e f #Kolar pp.82-83.
  65. ^ Freeman 2011.
  66. ^ 日本数学会編 2007.
  67. ^ Christoffel 1869.
  68. ^ Levi-Civita 1900.
  69. ^ Levi-Civita 1916.
  70. ^ Weyl 1918.
  71. ^ Cartan 1926.
  72. ^ Ehresmann 1950.
  73. ^ Koszul 1950.

注釈

  1. ^ a b 人名「Koszul」を「コシュール」と訳している文献[2][3][4]があるため、「コシュール接続」と読むと思われるが、「コシュール接続」と訳した文献を発見できなかったので本項では「Koszul接続」と表記した。なお、Wikipediaの英語版には「フランス語: [kɔsyl]」とある。
  2. ^ 接続M全域で定義されたベクトル場と切断に関するものなので、このような局所的に定義された座標で表示できるか否かは非自明である。しかしが「局所演算子」という性質を満たすことにより、局所的な座標で表示可能な事を示すことができる。詳細は接続 (ベクトル束)の項目を参照されたい。
  3. ^ 成分接続形式といい、ω接続行列: connection matrix)と呼ぶ場合もある[22]
  4. ^ 厳密には以下の通りである。Mの曲線に沿って定義された局所的な基底を考え、に沿って平行移動したものをとして行列 により定義すると、接続形式の定義より、 が成立する。ここでは成分ごとの微分の事である。 が計量と両立すれば、は正規直交基底である。よって が正規直交基底であれば、よりは回転変換であり、の微分は歪対称行列である。
  5. ^ ここでπ(e)のファイバーの点eにおける接空間であり、包含写像が誘導する写像によりTeEの部分空間とみなしている。
  6. ^ a b この「eに関してC級である」というのを厳密に定式化する方法は(同値な方法が)いくつかあるが、一つの方法は上のファイバーとするTEの部分ベクトルバンドルとみなし、TEC級の部分ベクトルバンドルである事を要請するというものである。
  7. ^ 垂直部分空間の定義よりであるが、はベクトル空間なので、と接空間は自然に同一視できる。
  8. ^ なお 、#Salamonではの(標準的とは限らない)基底からへの線形写像fと自然に同一視し、各に対し、
    Gに属する事を持ってG-フレームを定義しているが、この定義は本項で述べたものと同値である。
  9. ^ #Wendl3の定義は若干曖昧で単に「十分短い曲線」(sufficiently short path)に沿った平行移動がGと両立する自明化(G-compatible connection) for を持つとしか言っていないが、局所自明化可能な領域内の曲線がこのように書ければ十分なので、ここではそのように定義した。
  10. ^ a b ここで-線形であるとは、通常の線形性を満たすのみならず関数fに対してを満たす事を指す[53]-線形である事は、の各点における値がξηの点eにおける値ξeηeのみで決まること、すなわちΩが各点における双線形写像のテンソル場とみなせる事と同値である事が知られている[54]
  11. ^ #Kolarにおける曲率の定義はここに書いたものと符号が反対だが、#Kolar p.73.にあるように#Kolarの定義だと「通常の曲率と符号が反対」になるので、#Wendl5 p.121の方の符号を採用した。
  12. ^ #Kolar p.100-101.のみ右辺第二項はとなっているが、これは#Kolarの間違いであると判断した。実際#Kolar p.100の一番下にあるの定義式にを代入するととなり、とはならない。またこの#Kolar p.100の一番下の係数#森田の1巻のp.95.ではになっているため、#Kolarの定義式を間違えた可能性が高い。#Tu p.285も参照。
  13. ^ これはFreeman[65]の立場。ほかには、たとえば岩波数学辞典は後出のレヴィ=チヴィタによる平行移動の発見を接続の概念のはじまりとしている[66]
  14. ^ 正確には、現在の言葉でいう捩れのないアフィン接続。





英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  
  •  接続 (微分幾何学)のページへのリンク

辞書ショートカット

すべての辞書の索引

「接続 (微分幾何学)」の関連用語

接続 (微分幾何学)のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



接続 (微分幾何学)のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの接続 (微分幾何学) (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS