接続 (微分幾何学) ホロノミー群

接続 (微分幾何学)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2023/12/18 09:18 UTC 版)

ホロノミー群

本節では特に断りのない限り、完備な接続が定義されたファイバーバンドルでM連結なものとする。ここで接続が完備であるとは、M上の任意の曲線上にからまでの平行移動を常に定義可能な事を指す。

定義

Mの点とし、x0からx0自身への区分的になめらかな閉曲線とすると、接続が完備なのでx0のファイバーの任意の元eに対し、eに沿って一周平行移動してできた元をとする事で、上の可微分同相写像

を定義できる。

定理・定義 (ホロノミー群) ― 

x0から出てP自身への区分的になめらかな閉曲線

は閉曲線の連結に関して自然に群構造をなす。この群をEに関するx0におけるホロノミー群: holonomy group)という[64]

ホロノミーリー代数

における接ベクトルに対し、eでの水平リフトを対応させる

をファイバー上の切断とみなしたものをと書く。

2つのベクトルに対し、はいずれも上のベクトル場なので、曲率形式Ωに対して、

を定義でき、これは上のベクトル場とみなせる[64]。さらにをfixし、uからまでつなぐ曲線に沿ってを平行移動したものをと書く。

定理・定義 ―  上のベクトル場全体の集合リー括弧英語版に関する「無限次元リー代数」とみなしたとき、

xからx0までつなぐM上の曲線

を含む最小の(C-位相に関する)閉部分線形空間 を

と書くとき、の部分リー代数になっている。

ホロノミーリー代数: holonomy Lie algebra)という[64]

実は以下の定理が成立する。なお、以下の定理は主バンドルに対するAmbrose–Singerの定理を任意のファイバーバンドルに一般化したものである:

定理 (Ambrose-Singerの定理の一般化) ― ホロノミーリー代数が有限次元であれば、以下が成立する:

  • ホロノミー群をリー代数として持つリー群である[64]
  • あるG-主バンドル、およびGのファイバーへの作用が一意に存在し、へのG作用を使って作ったバンドルはと同型である[64]
  • 主バンドルには主バンドルとしての接続(詳細次章)が一意に存在し、この接続が上述のバンドルに誘導する接続との接続と同一である[64]

出典

  1. ^ C.G. Ricci, T. Levi=Civita (1901), Méthodes de calcul differéntiel absolu et leurs applications (絶対微分学の方法とその応用)矢野(1971) 和訳pp.17-95
  2. ^ 板場綾子「自己移入的Koszul多元環に対する有限条件(Fg) (有限群のコホモロジー論とその周辺)」『数理解析研究所講究録』第2061巻、京都大学数理解析研究所、2018年4月、33頁、CRID 1050001202603941760hdl:2433/241849ISSN 1880-2818NAID 120006645349 
  3. ^ Koszul duality for factorization algebras and extended topological field theories”. 2023年10月19日閲覧。
  4. ^ 2020年度 幾何学 B アインシュタイン計量の幾何学 -リーマン幾何学入門とアインシュタイン計量の幾何学への応用-” (PDF). p. 75. 2023年10月19日閲覧。
  5. ^ #Spivak p.251. 「this possibility of comparing, or "connecting", tangent spaces at different points gives rise to the term "connection".」
  6. ^ #Andrews Lecture 10, p.2.
  7. ^ #Tu p.45.
  8. ^ #Andrews Lecture 8 p.74, Lecture 10 p.98.
  9. ^ #新井 p.304.
  10. ^ #Tu p.45.
  11. ^ #Spivak p.241.
  12. ^ José Figueroa-O'Farrill. “Lecture 5: Connections on principal and vector bundles”. PG course on Spin Geometry. p. 40. 2023年1月12日閲覧。
  13. ^ #森田 p.213.
  14. ^ #Tu p.72.
  15. ^ #小林 p.76.
  16. ^ #Tu p.75.
  17. ^ a b #Tu p.263.
  18. ^ #Tu p.113.
  19. ^ #Tu p.263.
  20. ^ #Spivak p.251.
  21. ^ #小林 p.38.
  22. ^ #Tu p.80.
  23. ^ #Spivak p.251.
  24. ^ #Tu p.256.
  25. ^ #Wendl3 p.73.
  26. ^ a b c d #Wendl3 p.74.
  27. ^ 「エーレスマン接続」という訳語は#佐古を参考にした。#佐古に目次にこの名称が確認できる。
  28. ^ #Epstein p.95.
  29. ^ #Tu p.256.
  30. ^ Ehresmann connection”. nLab. 2023年8月30日閲覧。
  31. ^ #Kolar p.80.
  32. ^ #Kolar p.99.
  33. ^ #Kolar p.81.
  34. ^ #Tuynman p.345.
  35. ^ #Wendl3 p.75.
  36. ^ #Wendl3 pp.76-78.
  37. ^ #Kolar p.110.
  38. ^ #Wendl3 p.78.
  39. ^ #Wendl3 p.89.
  40. ^ #Tu p.247.
  41. ^ #Wendl3 p.89.
  42. ^ #Kolar p.100.
  43. ^ #Tu pp.255-256
  44. ^ #小林 p.61.
  45. ^ #Wendl3 p.90.なお本文献のみ「」ではなく「」になっているが、前後関係から「」の誤記と判断。
  46. ^ #Tu p.123.
  47. ^ #Salamon p.5.
  48. ^ #Wendl3 p.83.
  49. ^ #Pasquotto p.84.にこの定理のアフィン接続が述べられており、Koszul接続の場合も同様である旨が書いてある。このKoszul接続の場合は他の文献の記述からも従う。実際、の場合に1:1対応する事は#森田 pp.319-321従い、この場合にとなる事は#Tu p.268から従う。そしてGの部分リー群である場合に関しては#Kobayashi-Nomizu1 p.83のRemarkより-主バンドル上の接続形式がG-主バンドルにreduceする必要十分条件はωGのリー代数に値を取る事であるので、上記の事実から従う。
  50. ^ #Kobayashi-Nomizu-1 p.127.
  51. ^ a b #Wendl5 p.121.
  52. ^ #Kolar p.77.
  53. ^ #Tu p.49
  54. ^ #Tu p.56,58
  55. ^ #Wendl5 pp.119,121.
  56. ^ a b #Kolar pp.100-101.
  57. ^ #Tu p.270
  58. ^ a b #森田 p.302.
  59. ^ #小林 p.43.
  60. ^ #小林 p.43.
  61. ^ #Tu p.80
  62. ^ #Wendl5 p.123.
  63. ^ #Tu p.270.
  64. ^ a b c d e f #Kolar pp.82-83.
  65. ^ Freeman 2011.
  66. ^ 日本数学会編 2007.
  67. ^ Christoffel 1869.
  68. ^ Levi-Civita 1900.
  69. ^ Levi-Civita 1916.
  70. ^ Weyl 1918.
  71. ^ Cartan 1926.
  72. ^ Ehresmann 1950.
  73. ^ Koszul 1950.

注釈

  1. ^ a b 人名「Koszul」を「コシュール」と訳している文献[2][3][4]があるため、「コシュール接続」と読むと思われるが、「コシュール接続」と訳した文献を発見できなかったので本項では「Koszul接続」と表記した。なお、Wikipediaの英語版には「フランス語: [kɔsyl]」とある。
  2. ^ 接続M全域で定義されたベクトル場と切断に関するものなので、このような局所的に定義された座標で表示できるか否かは非自明である。しかしが「局所演算子」という性質を満たすことにより、局所的な座標で表示可能な事を示すことができる。詳細は接続 (ベクトル束)の項目を参照されたい。
  3. ^ 成分接続形式といい、ω接続行列: connection matrix)と呼ぶ場合もある[22]
  4. ^ 厳密には以下の通りである。Mの曲線に沿って定義された局所的な基底を考え、に沿って平行移動したものをとして行列 により定義すると、接続形式の定義より、 が成立する。ここでは成分ごとの微分の事である。 が計量と両立すれば、は正規直交基底である。よって が正規直交基底であれば、よりは回転変換であり、の微分は歪対称行列である。
  5. ^ ここでπ(e)のファイバーの点eにおける接空間であり、包含写像が誘導する写像によりTeEの部分空間とみなしている。
  6. ^ a b この「eに関してC級である」というのを厳密に定式化する方法は(同値な方法が)いくつかあるが、一つの方法は上のファイバーとするTEの部分ベクトルバンドルとみなし、TEC級の部分ベクトルバンドルである事を要請するというものである。
  7. ^ 垂直部分空間の定義よりであるが、はベクトル空間なので、と接空間は自然に同一視できる。
  8. ^ なお 、#Salamonではの(標準的とは限らない)基底からへの線形写像fと自然に同一視し、各に対し、
    Gに属する事を持ってG-フレームを定義しているが、この定義は本項で述べたものと同値である。
  9. ^ #Wendl3の定義は若干曖昧で単に「十分短い曲線」(sufficiently short path)に沿った平行移動がGと両立する自明化(G-compatible connection) for を持つとしか言っていないが、局所自明化可能な領域内の曲線がこのように書ければ十分なので、ここではそのように定義した。
  10. ^ a b ここで-線形であるとは、通常の線形性を満たすのみならず関数fに対してを満たす事を指す[53]-線形である事は、の各点における値がξηの点eにおける値ξeηeのみで決まること、すなわちΩが各点における双線形写像のテンソル場とみなせる事と同値である事が知られている[54]
  11. ^ #Kolarにおける曲率の定義はここに書いたものと符号が反対だが、#Kolar p.73.にあるように#Kolarの定義だと「通常の曲率と符号が反対」になるので、#Wendl5 p.121の方の符号を採用した。
  12. ^ #Kolar p.100-101.のみ右辺第二項はとなっているが、これは#Kolarの間違いであると判断した。実際#Kolar p.100の一番下にあるの定義式にを代入するととなり、とはならない。またこの#Kolar p.100の一番下の係数#森田の1巻のp.95.ではになっているため、#Kolarの定義式を間違えた可能性が高い。#Tu p.285も参照。
  13. ^ これはFreeman[65]の立場。ほかには、たとえば岩波数学辞典は後出のレヴィ=チヴィタによる平行移動の発見を接続の概念のはじまりとしている[66]
  14. ^ 正確には、現在の言葉でいう捩れのないアフィン接続。





英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  
  •  接続 (微分幾何学)のページへのリンク

辞書ショートカット

すべての辞書の索引

「接続 (微分幾何学)」の関連用語

接続 (微分幾何学)のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



接続 (微分幾何学)のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの接続 (微分幾何学) (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS