同値類
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/10/11 05:23 UTC 版)

数学において,ある集合 S の元が(同値関係として定式化される)同値の概念を持つとき,集合 S を同値類(どうちるい,英: equivalence class)たちに自然に分割できる.これらの同値類は,元 a と b が同じ同値類に属するのは a と b が同値であるとき,かつそのときに限るものとして構成される.
フォーマルには,集合 S と S 上の同値関係 ∼ が与えられたとき,元 a の S における同値類は,a に同値な元全体の集合
同値類
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/10/08 06:12 UTC 版)
同値関係の同値類を [x] でなく x と書くのは記号の濫用である。形式的には、集合 X を同値関係 ∼ によって分割したとき、各 x ∈ X に対し、同値類 {y ∈ X | y ∼ x} は [x] と表記される。しかし実際には、議論がもとの集合の個々の元ではなく同値類にあるとき、角括弧を落とすのが一般的である。あるいは、実際には個々の元の方を考えているのに、同値類を指す記号を用いることもある。 前者の例としては、例えば、合同算術において、n を法とした x の合同類を単に x と書いたり、ルベーグ積分論において、測度空間上の可測関数を「ほとんどいたるところ等しい」という関係で割った空間(たとえば L2)を考えるときに、同値類をもとの関数と同じ記号で表したりする(ここで注意すべきことであるが、商空間では「関数 f の x における値 f(x)」というものは全く意味を持たない)。 後者の例としては、例えば、群 G の既約表現の同値類の全体をここでは仮に A と書くと、G の既約表現は普通 (π, V) ∈ A あるいは π ∈ A と書かれる。
※この「同値類」の解説は、「記号の濫用」の解説の一部です。
「同値類」を含む「記号の濫用」の記事については、「記号の濫用」の概要を参照ください。
同値類
- 同値類のページへのリンク