クォークグルーオンプラズマ
クォークグルーオンプラズマ(英: Quark-Gluon Plasma, QGP)とは、高温・高密度状態において存在すると予想されているクォークおよびグルーオンからなるプラズマ状態である。高密度状態におけるハドロンからのクォークの解放は1975年にJohn C. CollinsとMalcolm John Perry[1]によって予言され、同年、高温状態におけるクォークの解放がニコラ・カビボとGiorgio Parisi[2]によって予言された。
概要
低温・低密度状態では、クォークはハドロンの中に閉じ込められており、単独で取り出すことはできない。量子色力学(QCD)による理論計算によると、核子の密度が低い場合は150~200MeV (約1012K)以上の高温状態、ゼロ温度では通常の核子の密度の10倍程度の高密度状態で、多体効果によりその系はクォークとグルーオンからなるガス状態になると予想されている。
クォークグルーオンプラズマはビッグバン後の初期宇宙(高温状態)、あるいは中性子星の内部で実現されていると考えられている。これらをそのまま地球上で再現することは不可能であるが、高エネルギーの重イオンを衝突させることで瞬間的に高温高圧を発生させ、実験的にクォークグルーオンプラズマを作ることが出来ると考えられている。
ブルックヘブン国立研究所 (BNL) の相対論的重イオン衝突型加速器 (RHIC) による実験は、高温高密度物質に関する様々な新現象を明らかにしたが、それらがQGPで説明できるという決定的な証拠はまだない。2005年4月の報告[3]では、QGPを完全流体(粘性がゼロの流体)であると仮定したときの相対論的流体力学モデルと矛盾しない性質が得られており、これはQGP中の粒子が強く相互作用し合う状態(強相関プラズマ)であることを示唆している。さらに、2008年に稼働した欧州原子核研究機構 (CERN) の大型ハドロン衝突型加速器 (LHC) によるATLAS、CMS、ALICE実験でのさらなる研究によって、量子色力学に基づく理解が得られることが期待されている。
理論から予想される性質
状態方程式(バッグ模型)
有限温度のハドロンガスやQGPの状態方程式(熱力学量と温度の関係式)を理論的に予言することは、その熱力学的な性質を知るために重要である。これらの関係式は、十分に低温・高温状態に限っては、統計力学を用いてシュテファン=ボルツマンの法則(光子気体の状態方程式)を導いたのと同様の方法で導出できる。
以下の議論では、単純化するために質量ゼロのクォークのみを考える。このとき、転移温度以下のハドロン相においては質量ゼロのパイ中間子が真空から励起し、QGP相においては質量ゼロのクォークやグルーオンが励起する。十分低温においては、パイ中間子の間に働く相互作用が十分弱くなることがカイラル摂動論によって証明されている。一方、十分高温においては、クォークやグルーオンの運動量が十分大きいので、漸近的自由性により結合定数は小さくなる。従って、十分低温・高温の場合に限っては、相互作用の無い自由なパイ中間子ガス、自由なクォーク・グルーオンのガスと見做す近似が可能となり、一般的な統計力学の手法が適用できる。
パイ中間子のみからなる有限温度のハドロンガスに対して、圧力P、エネルギー密度ε、エントロピー密度sは以下のように表せる。
- フェルミ縮退
- クォーク物質
- クォークグルーオンプラズマ
- 超臨界流体