Math.E フィールド
アセンブリ: mscorlib (mscorlib.dll 内)


このフィールドの値は 2.7182818284590452354 です。

次に示すのは、E を、累乗級数から計算された値と比較する例をです。
' Example for the Math.E field. Imports System Imports Microsoft.VisualBasic Module EField Sub Main() Console.WriteLine( _ "This example of Math.E = {0:E16}" & vbCrLf & _ "generates the following output." & vbCrLf, _ Math.E ) Console.WriteLine( _ "Define the power series PS(n) = Sum(k->0,n)[1/k!]" ) Console.WriteLine( " (limit n->infinity)PS(n) = e" ) Console.WriteLine( _ "Display PS(n) and Math.E - PS(n), " & _ "and stop when delta < 1.0E-15" & vbCrLf ) CalcPowerSeries() End Sub 'Main ' Approximate E with a power series. Sub CalcPowerSeries() Dim factorial As Double = 1.0 Dim PS As Double = 0.0 ' Stop iterating when the series converges, ' and prevent a runaway process. Dim n As Integer For n = 0 To 999 ' Calculate a running factorial. If n > 0 Then factorial *= System.Convert.ToDouble(n) End If ' Calculate and display the power series. PS += 1.0 / factorial Console.WriteLine( _ "PS({0:D2}) = {1:E16}, Math.E - PS({0:D2}) = {2:E16}", _ n, PS, Math.E - PS ) ' Exit when the series converges. If Math.Abs( Math.E - PS ) < 1.0E-15 Then Exit For End If Next n End Sub 'CalcPowerSeries End Module 'EField ' This example of Math.E = 2.7182818284590451E+000 ' generates the following output. ' ' Define the power series PS(n) = Sum(k->0,n)[1/k!] ' (limit n->infinity)PS(n) = e ' Display PS(n) and Math.E - PS(n), and stop when delta < 1.0E-15 ' ' PS(00) = 1.0000000000000000E+000, Math.E - PS(00) = 1.7182818284590451E+000 ' PS(01) = 2.0000000000000000E+000, Math.E - PS(01) = 7.1828182845904509E-001 ' PS(02) = 2.5000000000000000E+000, Math.E - PS(02) = 2.1828182845904509E-001 ' PS(03) = 2.6666666666666665E+000, Math.E - PS(03) = 5.1615161792378572E-002 ' PS(04) = 2.7083333333333330E+000, Math.E - PS(04) = 9.9484951257120535E-003 ' PS(05) = 2.7166666666666663E+000, Math.E - PS(05) = 1.6151617923787498E-003 ' PS(06) = 2.7180555555555554E+000, Math.E - PS(06) = 2.2627290348964380E-004 ' PS(07) = 2.7182539682539684E+000, Math.E - PS(07) = 2.7860205076724043E-005 ' PS(08) = 2.7182787698412700E+000, Math.E - PS(08) = 3.0586177750535626E-006 ' PS(09) = 2.7182815255731922E+000, Math.E - PS(09) = 3.0288585284310443E-007 ' PS(10) = 2.7182818011463845E+000, Math.E - PS(10) = 2.7312660577649694E-008 ' PS(11) = 2.7182818261984929E+000, Math.E - PS(11) = 2.2605521898810821E-009 ' PS(12) = 2.7182818282861687E+000, Math.E - PS(12) = 1.7287637987806193E-010 ' PS(13) = 2.7182818284467594E+000, Math.E - PS(13) = 1.2285727990501982E-011 ' PS(14) = 2.7182818284582302E+000, Math.E - PS(14) = 8.1490370007486490E-013 ' PS(15) = 2.7182818284589949E+000, Math.E - PS(15) = 5.0182080713057076E-014 ' PS(16) = 2.7182818284590429E+000, Math.E - PS(16) = 2.2204460492503131E-015 ' PS(17) = 2.7182818284590455E+000, Math.E - PS(17) = -4.4408920985006262E-016
// Example for the Math.E field. using System; class EField { public static void Main() { Console.WriteLine( "This example of Math.E == {0:E16}\n" + "generates the following output.\n", Math.E ); Console.WriteLine( "Define the power series PS(n) = Sum(k->0,n)[1/k!]" ); Console.WriteLine( " (limit n->infinity)PS(n) == e" ); Console.WriteLine( "Display PS(n) and Math.E - PS(n), " + "and stop when delta < 1.0E-15\n" ); CalcPowerSeries(); } // Approximate E with a power series. static void CalcPowerSeries() { double factorial = 1.0; double PS = 0.0; // Stop iterating when the series converges, // and prevent a runaway process. for( int n = 0; n < 999 && Math.Abs( Math.E - PS ) > 1.0E-15; n++ ) { // Calculate a running factorial. if( n > 0 ) factorial *= (double)n; // Calculate and display the power series. PS += 1.0 / factorial; Console.WriteLine( "PS({0:D2}) == {1:E16}, Math.E - PS({0:D2}) == {2:E16}" , n, PS, Math.E - PS ); } } } /* This example of Math.E == 2.7182818284590451E+000 generates the following output. Define the power series PS(n) = Sum(k->0,n)[1/k!] (limit n->infinity)PS(n) == e Display PS(n) and Math.E - PS(n), and stop when delta < 1.0E-15 PS(00) == 1.0000000000000000E+000, Math.E - PS(00) == 1.7182818284590451E+000 PS(01) == 2.0000000000000000E+000, Math.E - PS(01) == 7.1828182845904509E-001 PS(02) == 2.5000000000000000E+000, Math.E - PS(02) == 2.1828182845904509E-001 PS(03) == 2.6666666666666665E+000, Math.E - PS(03) == 5.1615161792378572E-002 PS(04) == 2.7083333333333330E+000, Math.E - PS(04) == 9.9484951257120535E-003 PS(05) == 2.7166666666666663E+000, Math.E - PS(05) == 1.6151617923787498E-003 PS(06) == 2.7180555555555554E+000, Math.E - PS(06) == 2.2627290348964380E-004 PS(07) == 2.7182539682539684E+000, Math.E - PS(07) == 2.7860205076724043E-005 PS(08) == 2.7182787698412700E+000, Math.E - PS(08) == 3.0586177750535626E-006 PS(09) == 2.7182815255731922E+000, Math.E - PS(09) == 3.0288585284310443E-007 PS(10) == 2.7182818011463845E+000, Math.E - PS(10) == 2.7312660577649694E-008 PS(11) == 2.7182818261984929E+000, Math.E - PS(11) == 2.2605521898810821E-009 PS(12) == 2.7182818282861687E+000, Math.E - PS(12) == 1.7287637987806193E-010 PS(13) == 2.7182818284467594E+000, Math.E - PS(13) == 1.2285727990501982E-011 PS(14) == 2.7182818284582302E+000, Math.E - PS(14) == 8.1490370007486490E-013 PS(15) == 2.7182818284589949E+000, Math.E - PS(15) == 5.0182080713057076E-014 PS(16) == 2.7182818284590429E+000, Math.E - PS(16) == 2.2204460492503131E-015 PS(17) == 2.7182818284590455E+000, Math.E - PS(17) == -4.4408920985006262E-016 */
// Example for the Math::E field. using namespace System; // Approximate E with a power series. void CalcPowerSeries() { double factorial = 1.0; double PS = 0.0; // Stop iterating when the series converges, // and prevent a runaway process. for ( int n = 0; n < 999 && Math::Abs( Math::E - PS ) > 1.0E-15; n++ ) { // Calculate a running factorial. if ( n > 0 ) factorial *= (double)n; // Calculate and display the power series. PS += 1.0 / factorial; Console::WriteLine( "PS({0:D2}) == {1:E16}, Math::E - PS({0:D2}) == {2:E16}", n, PS, Math::E - PS ); } } int main() { Console::WriteLine( "This example of Math::E == {0:E16}\n" "generates the following output.\n", Math::E ); Console::WriteLine( "Define the power series PS(n) = Sum(k->0,n)[1/k!]" ); Console::WriteLine( " (limit n->infinity)PS(n) == e" ); Console::WriteLine( "Display PS(n) and Math::E - PS(n), " "and stop when delta < 1.0E-15\n" ); CalcPowerSeries(); } /* This example of Math::E == 2.7182818284590451E+000 generates the following output. Define the power series PS(n) = Sum(k->0,n)[1/k!] (limit n->infinity)PS(n) == e Display PS(n) and Math::E - PS(n), and stop when delta < 1.0E-15 PS(00) == 1.0000000000000000E+000, Math::E - PS(00) == 1.7182818284590451E+000 PS(01) == 2.0000000000000000E+000, Math::E - PS(01) == 7.1828182845904509E-001 PS(02) == 2.5000000000000000E+000, Math::E - PS(02) == 2.1828182845904509E-001 PS(03) == 2.6666666666666665E+000, Math::E - PS(03) == 5.1615161792378572E-002 PS(04) == 2.7083333333333330E+000, Math::E - PS(04) == 9.9484951257120535E-003 PS(05) == 2.7166666666666663E+000, Math::E - PS(05) == 1.6151617923787498E-003 PS(06) == 2.7180555555555554E+000, Math::E - PS(06) == 2.2627290348964380E-004 PS(07) == 2.7182539682539684E+000, Math::E - PS(07) == 2.7860205076724043E-005 PS(08) == 2.7182787698412700E+000, Math::E - PS(08) == 3.0586177750535626E-006 PS(09) == 2.7182815255731922E+000, Math::E - PS(09) == 3.0288585284310443E-007 PS(10) == 2.7182818011463845E+000, Math::E - PS(10) == 2.7312660577649694E-008 PS(11) == 2.7182818261984929E+000, Math::E - PS(11) == 2.2605521898810821E-009 PS(12) == 2.7182818282861687E+000, Math::E - PS(12) == 1.7287637987806193E-010 PS(13) == 2.7182818284467594E+000, Math::E - PS(13) == 1.2285727990501982E-011 PS(14) == 2.7182818284582302E+000, Math::E - PS(14) == 8.1490370007486490E-013 PS(15) == 2.7182818284589949E+000, Math::E - PS(15) == 5.0182080713057076E-014 PS(16) == 2.7182818284590429E+000, Math::E - PS(16) == 2.2204460492503131E-015 PS(17) == 2.7182818284590455E+000, Math::E - PS(17) == -4.4408920985006262E-016 */
// Example for the Math.E field. import System.*; class EField { public static void main(String[] args) { Console.WriteLine("This example of Math.E == {0}\n" + "generates the following output.\n", ((System.Double)Math.E).ToString("E16")); Console.WriteLine("Define the power series PS(n) = Sum(k->0,n)[1/k!]"); Console.WriteLine(" (limit n->infinity)PS(n) == e"); Console.WriteLine(("Display PS(n) and Math.E - PS(n), " + "and stop when delta < 1.0E-15\n")); CalcPowerSeries(); } //main // Approximate E with a power series. static void CalcPowerSeries() { double factorial = 1.0; double pS = 0.0; // Stop iterating when the series converges, // and prevent a runaway process. for (int n=0; n < 999 && System.Math.Abs((Math.E - pS)) > 1E-15; n++) { // Calculate a running factorial. if (n > 0) { factorial *= (double)(n); } // Calculate and display the power series. pS += 1.0 /factorial; Console.WriteLine("PS({0}) == {1}, Math.E - PS({0}) == {2}" , ((System.Int32) n).ToString("D2"), ((System.Double )pS).ToString("E16"), ((System.Double )(Math.E - pS)).ToString("E16")); } } //CalcPowerSeries } //EField /* This example of Math.E == 2.7182818284590451E+000 generates the following output. Define the power series PS(n) = Sum(k->0,n)[1/k!] (limit n->infinity)PS(n) == e Display PS(n) and Math.E - PS(n), and stop when delta < 1.0E-15 PS(00) == 1.0000000000000000E+000, Math.E - PS(00) == 1.7182818284590451E+000 PS(01) == 2.0000000000000000E+000, Math.E - PS(01) == 7.1828182845904509E-001 PS(02) == 2.5000000000000000E+000, Math.E - PS(02) == 2.1828182845904509E-001 PS(03) == 2.6666666666666665E+000, Math.E - PS(03) == 5.1615161792378572E-002 PS(04) == 2.7083333333333330E+000, Math.E - PS(04) == 9.9484951257120535E-003 PS(05) == 2.7166666666666663E+000, Math.E - PS(05) == 1.6151617923787498E-003 PS(06) == 2.7180555555555554E+000, Math.E - PS(06) == 2.2627290348964380E-004 PS(07) == 2.7182539682539684E+000, Math.E - PS(07) == 2.7860205076724043E-005 PS(08) == 2.7182787698412700E+000, Math.E - PS(08) == 3.0586177750535626E-006 PS(09) == 2.7182815255731922E+000, Math.E - PS(09) == 3.0288585284310443E-007 PS(10) == 2.7182818011463845E+000, Math.E - PS(10) == 2.7312660577649694E-008 PS(11) == 2.7182818261984929E+000, Math.E - PS(11) == 2.2605521898810821E-009 PS(12) == 2.7182818282861687E+000, Math.E - PS(12) == 1.7287637987806193E-010 PS(13) == 2.7182818284467594E+000, Math.E - PS(13) == 1.2285727990501982E-011 PS(14) == 2.7182818284582302E+000, Math.E - PS(14) == 8.1490370007486490E-013 PS(15) == 2.7182818284589949E+000, Math.E - PS(15) == 5.0182080713057076E-014 PS(16) == 2.7182818284590429E+000, Math.E - PS(16) == 2.2204460492503131E-015 PS(17) == 2.7182818284590455E+000, Math.E - PS(17) == -4.4408920985006262E-016 */

Windows 98, Windows 2000 SP4, Windows CE, Windows Millennium Edition, Windows Mobile for Pocket PC, Windows Mobile for Smartphone, Windows Server 2003, Windows XP Media Center Edition, Windows XP Professional x64 Edition, Windows XP SP2, Windows XP Starter Edition
開発プラットフォームの中には、.NET Framework によってサポートされていないバージョンがあります。サポートされているバージョンについては、「システム要件」を参照してください。


- Math.E フィールドのページへのリンク