Factor of automorphyとは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > Factor of automorphyの意味・解説 

保型因子

(Factor of automorphy から転送)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2018/11/22 22:23 UTC 版)

ナビゲーションに移動 検索に移動

数学における保型因子(ほけいいんし、: factor of automorphy)の概念は、複素解析多様体への作用が定められているという状況で生じてくる。

定義

G が複素解析多様体 X に作用しているものとすると、この群 GX 上の複素数値正則函数全体の成す空間にも作用する。このような函数 f保型形式であるとは、群 G の作用に関して

なる関係を満たすことを言う。ただし、jg(x) は至る所零でない正則函数とする。これは、保型形式は G の作用のもとで不変となる成分 (divisor) を持つような函数であるというように述べることもできる。

保型形式 f保型因子とはこのような函数 j のことである。また、保型函数 (automorphic function) とは、その保型因子 j が常に 1 であるような保型形式をいう。

性質

保型因子に関していくつかの事実が成り立つ。

  • 任意の保型因子は、至る所零でない正則函数全体の成す乗法群への G の作用に関する 1-双対輪体である。
  • 保型因子が双対境界輪体となることと、それが至る所零でない保型形式の保型因子として得られることとは同値である。
  • 与えられた保型因子に対して、それを保型因子に持つ保型形式の全体はベクトル空間を成す。
  • 二つの保型形式の点ごとの積は、それら二つの保型形式の保型因子の積を保型因子として持つ保型形式となる。

関連する概念

保型因子とその他の概念の間の関係として、以下のようなものが挙げられる。

  • Γ がリー群 G 内の格子群であるとき、Γ に対する保型因子は、商リー群 G/Γ 上の直線束に対応する。さらに、与えられた保型因子に対する保型形式は対応する直線束の切断に対応する。

Γ が SL(2, R) の部分群で上半平面に作用している場合に特殊化した議論はモジュラー形式の保型因子の項に譲る。

参考文献


「Factor of automorphy」の例文・使い方・用例・文例

Weblio日本語例文用例辞書はプログラムで機械的に例文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

Factor of automorphyのお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



Factor of automorphyのページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの保型因子 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。
Tanaka Corpusのコンテンツは、特に明示されている場合を除いて、次のライセンスに従います:
 Creative Commons Attribution (CC-BY) 2.0 France.
この対訳データはCreative Commons Attribution 3.0 Unportedでライセンスされています。
浜島書店 Catch a Wave
Copyright © 1995-2025 Hamajima Shoten, Publishers. All rights reserved.
株式会社ベネッセコーポレーション株式会社ベネッセコーポレーション
Copyright © Benesse Holdings, Inc. All rights reserved.
研究社研究社
Copyright (c) 1995-2025 Kenkyusha Co., Ltd. All rights reserved.
日本語WordNet日本語WordNet
日本語ワードネット1.1版 (C) 情報通信研究機構, 2009-2010 License All rights reserved.
WordNet 3.0 Copyright 2006 by Princeton University. All rights reserved. License
日外アソシエーツ株式会社日外アソシエーツ株式会社
Copyright (C) 1994- Nichigai Associates, Inc., All rights reserved.
「斎藤和英大辞典」斎藤秀三郎著、日外アソシエーツ辞書編集部編
EDRDGEDRDG
This page uses the JMdict dictionary files. These files are the property of the Electronic Dictionary Research and Development Group, and are used in conformance with the Group's licence.

©2025 GRAS Group, Inc.RSS