被覆変換
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/05/30 08:01 UTC 版)
被覆 p : C → X の被覆変換、もしくは、自己同型とは、p ∘ f = p であるような C 上の自己同相写像 f : C → C のことを言う。被覆 p の被覆変換の全体は、写像の合成に関して群を成し、被覆変換群(covering transformation group) Aut(p) と呼ばれる。被覆変換(covering transformations)はデック変換(deck transformation)とも呼ばれる。全ての被覆変換は、各々のファイバーの元を置き換える。このことは、各々のファイバー上で被覆変換の群作用を定義する。リフト(持ち上げ)の一意性により、f が恒等写像でなく C が弧状連結であれば、f は不動点を持たない。 ここで、p : C → X が被覆写像で、C が連結かつ局所弧状連結であるとする(従って、X もそのようになる)。各々のファイバーの上での Aut(p) の作用は、自由である。この作用があるファイバー上で推移的であれば、すべてのファイバー上で推移的であり、この場合を被覆は正規(regular)や正則(normal)、ガロア的と呼ばれる。全てのそのような正規な被覆は、主 G-バンドルであり、G = Aut(p) は離散位相群と考えられる。 全ての普遍被覆 p : D → X は正規であり、被覆変換群は基本群 π1(X) に同型である。 上記の p(z) = zn の例 p : C× → C× は、正規被覆であり、被覆変換は 1の n-乗根による乗法であり、従って、被覆変換群は巡回群 Cn に同型である。 他の例として、上記の p(z) = zn! の例 p : C* → C* も正規被覆であり、変換群の階層を持っている。実際、Cx! は、1 ≤ x ≤ y ≤ n に対し Cy! の部分群である。
※この「被覆変換」の解説は、「被覆空間」の解説の一部です。
「被覆変換」を含む「被覆空間」の記事については、「被覆空間」の概要を参照ください。
- 被覆変換のページへのリンク