理論をまとめること
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2020/01/09 22:47 UTC 版)
「数学における統一理論」の記事における「理論をまとめること」の解説
もっと大仰でない規模では、数学の異なる二つの分野における結果の集まりがよく似ているという事例はよくあることで、それらの関係を明らかにする統一的な枠組みがあるかどうかを問題にすることができる。解析幾何学における例は既に述べた。より一般に、代数幾何学の分野において、幾何学的対象(代数多様体あるいはもっと一般のスキーム)と代数的対象(環のイデアル)との関係性が十分に調べられている。ここでの試金石的な結果はヒルベルトの零点定理で、これは大まかに言えば先ほどの二種類の対象の間の自然な一対一対応の存在を示すものである。 他の定理にも、同じ観点で捉えることができるものがある。例えば、ガロワ対応は、ある体の拡大とそのガロワ群の部分群の間の一対一対応の存在を示唆するものである。また、楕円曲線に対する谷山・志村予想(現在はもう証明されている)は、モジュラー形式として定義される曲線と有理数体上で定義される楕円曲線との間の一対一対応を確立した。モンスターのムーンシャインとも渾名される研究領域では、モジュラー形式とモンスターとして知られる有限単純群との間の関係の研究が展開される。そこでは専らそれらの各々についての驚くべき観察に始まって、196884 という全く普通ではない数が非常に自然に生じてくる。ラングランズ・プログラムとして知られる分野では、同様に一見偶然とも思える(この場合、ある種の群の数論的結果と表現論的結果の間の)類似性から始めて、両者の結果が系として得られるような構成が予見される。
※この「理論をまとめること」の解説は、「数学における統一理論」の解説の一部です。
「理論をまとめること」を含む「数学における統一理論」の記事については、「数学における統一理論」の概要を参照ください。
- 理論をまとめることのページへのリンク