潜在的な問題
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/11/09 10:09 UTC 版)
操作変数が興味のある方程式の誤差項と相関していると、操作変数推定量は一般的には一致推定量ではない。Bound, Jaeger, and Baker (1995) が記すように、"弱"操作変数の選択によりまた別の問題が起こる。弱操作変数とは、第一段階の方程式において内生的な説明変数の予測値としては不十分であるような操作変数のことである。この場合、弱操作変数による内生変数の予測は不十分で、予測値はほとんど変動しない。結果として第二段階の方程式において内生変数を置き換えるために弱操作変数を使ったとき、最終的な値を予測することが難しくなる。 上で議論した喫煙と健康の例における文脈では、喫煙状態がタバコ税の変動にほとんど反応しないのであれば、タバコ税は喫煙についての弱操作変数となる。もし高い税率によって人々がタバコをやめる(もしくは喫煙を始めない)ことがないのであれば、タバコ税の変動は健康に対する喫煙の影響について何も情報を持たない。もしタバコ税が喫煙に与える影響というより他の経路を通して健康に影響を与えるのであれば、タバコ税は操作変数としては不適格であるし、操作変数法は間違った結果を生みかねない。例えば、相対的に健康志向な人々がいる時と場所においては、高い税率のタバコ税の実施と、たとえタバコ税が低率のままであったとしても健康であろうする行動の両方がなされるだろう。そして、仮にもし喫煙が健康に何の影響も与えないとしても、健康とタバコ税の間に相関が見られるだろう。この場合、タバコ税と健康の間に観測された相関から健康に対するタバコの因果効果を推測するのは過ちであろう。
※この「潜在的な問題」の解説は、「操作変数法」の解説の一部です。
「潜在的な問題」を含む「操作変数法」の記事については、「操作変数法」の概要を参照ください。
- 潜在的な問題のページへのリンク