操作変数法
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/11/29 04:54 UTC 版)
操作変数法(そうさへんすうほう、英: method of instrumental variables, IV)とは、統計学、計量経済学、疫学、また関連分野において、統制された実験が出来ない時、もしくは処置がランダムに割り当てられない時に、因果関係を推定するための方法である[1]。直感的に言えば、操作変数は説明変数と被説明変数の間の相関が二変数間の因果関係をもっともらしく反映していない時に用いられる。妥当な操作変数は説明変数に影響を与えるが被説明変数に独立的な影響を持たず、研究者が被説明変数に対する説明変数の因果効果を明らかにすることを可能とする。
操作変数法は説明変数(共変数)が回帰モデルにおける誤差項と相関している時に一致推定することを可能とする。このような相関は、被説明変数の変化が共変数の少なくとも一つの値を変化させる時("逆"の因果)、説明変数と被説明変数の双方に影響を与える除外変数が存在する時、共変数に測定誤差がある時(error-in-variables models)に起こるだろう。回帰の文脈において一つないしは複数の問題を持つ説明変数は時折、内生性として言及される。この状況下では、最小二乗法はバイアスを持ち一致性を持たない推定量を生み出す[2]。しかし、もし操作変数が利用可能ならば、一致推定量を得ることができる。操作変数とはそれ自身は説明すべき方程式には依存していないが、内生的な説明変数とほかの共変数の値による条件の下で相関している変数のことである。線形モデルにおいては操作変数法を用いるために二つの必要な仮定がある。
- 操作変数は他の共変数で条件付けた時に、内生的な説明変数と相関しなくてはならない。もしこの相関が統計的に有意なほど高ければ、その操作変数は強い第一段階(英: strong first stage)を持つと言う。相関が弱いとパラメータの推定値と標準誤差について間違った推論を導きかねない[3]。
- 操作変数は説明方程式の誤差項と他の共変数で条件付けた時に相関してはならない。言い換えると、操作変数は元の予測変数と同じ問題に直面することがない。もしこの条件が満たされているならば、その操作変数は除外制約(英: exclusion restriction)を満たすと言う。
導入
操作変数法の概念はフィリップ・ライト(英: Philip G. Wright)と共著者で息子のシューアル・ライトにより、1928年に出版された著書The Tariff on Animal and Vegetable Oils[4][5]において同時方程式の文脈で導出された。1945年、Olav Reiersøl は彼の学位論文において、errors-in-variables modelsの文脈で同じ手法を用い、その手法に名前を与えた[6]。
操作変数法の背後にあるアイデアは広いモデルのクラスに拡張できるが、操作変数法についての非常に一般的な文脈は線形回帰にある。伝統的に、操作変数は
ランダムに学生が寮に割り当てられるような大学において、大学のチュータープログラム(Tutoring Program)がGPAに与える影響を推定したいとしよう。チュータープログラムへの出席とGPAの間の関係は数多くの要因によって混同される。チュータープログラムに出席した学生は自分の成績に注意を払うかもしれないし、努力をするかもしれない(この混同は図.1-3における右側のチュータープログラムとGPAの間の双方向に伸びる弧を通して描写される)。学生が寮にランダムに割り当てられたとして、チュータープログラムが行われる場所からの学生の寮の近さは操作変数の自然な候補になる。
しかしながら、チュータープログラムが大学の図書館で行われたらどうなるだろうか。チュータープログラムが行われる場所と寮の近さは学生がより図書館で時間を費やそうとする原因になりうるだろうし、今度はそれがGPAを改善するだろう(図1を参照)。図2において描写されている因果グラフを用いると、チュータープログラムの行われる場所の近さは、グラフ