準巨星分枝
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/07/18 05:09 UTC 版)
中心核の水素を燃焼し尽くした主系列星の内部では、ほぼヘリウムで構成された中心核を取り巻く分厚い水素殻の燃焼が始まる。ヘリウム中心核はシェーンベルグ=チャンドラセカール限界未満の質量で熱平衡状態にあり、この段階の星は準巨星に分類される。水素殻の核融合により産生されるエネルギーは星の大きさを保つのに必要なエネルギーよりも大きく、余剰エネルギーは星の外層を膨らませるために消費される。この膨張によって表面温度は冷却されるが、光度は増大しない。 1 M☉前後の質量の恒星では、ヘリウム中心核の質量が十分に増えて縮退するまで水素殻燃焼が続く。その後、中心核は収縮・加熱し、強い温度勾配が発生する。温度変化に敏感なCNOサイクルで核融合している水素殻が中心核に加熱されることによって水素殻燃焼のエネルギー産生量が大幅に増加され、赤色巨星分枝のふもとに至ると考えられている。1 M☉の恒星の場合、中心核の水素が枯渇してから20億年前後はこの段階にある。 2 M☉程度の質量を持つ準巨星は、中心核が縮退する前に比較的早期にシェーンベルグ=チャンドラセカール限界に達する。中心核はまだ水素殻からのエネルギーで熱力学的に自重を支えているが、もはや熱平衡状態ではない。中心核が収縮・加熱することで水素殻は薄くなり、恒星外層は膨張する。この組み合わせにより、星は赤色巨星分枝のふもとに向けて冷えていくに従って光度が低下する。中心核が縮退する前に、外側の水素外層が不透明となって星の冷却が止まり、水素殻の核融合率が上がり、星は赤色巨星分枝の段階に入る。これらの星では数百万年以内に準巨星段階を終えるため、プレセペ星団のような若い散開星団のHR図に見られるように、B型主系列星と赤色巨星分枝星の間に顕著な隙間が生じる。これは「ヘルツシュプルングの間隙(ヘルツシュプルング・ギャップ)」と呼ばれ、赤色巨星に向けて急速に進化する準巨星がまばらに存在している。これに対してω星団のような年老いた球状星団では低質量の準巨星が短く密集した分枝が見られる。
※この「準巨星分枝」の解説は、「赤色巨星分枝」の解説の一部です。
「準巨星分枝」を含む「赤色巨星分枝」の記事については、「赤色巨星分枝」の概要を参照ください。
- 準巨星分枝のページへのリンク