正角図法の特徴
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/03/16 22:46 UTC 版)
正角図法とは、地図上の全ての点で正角性が成り立つ投影法である。つまり地図上のどの点でも、小さな図形であれば地球上の図形が正しい形で描かれる。小さな図形の中であれば長さの比なども保存される。テイソーの指示楕円で見ると、すべてが正しい円で表示される図法である。 しかし、あくまで「小さな図形であれば」であって、大きな図形でも正しい形で投影されるとは限らない。そもそも球面上では「3つの角がすべて90度である正三角形」もありえて、これを「正しく」地図上に描くことは不可能である。正角図法でこの三角形を描けば、3つの角がすべて90度ではあるが辺が曲線になる、または無限遠点を含む形になる。赤道も「北極の周りの円」とも「地球周囲のまっすぐな線」とも見る事が出来るが、1枚の地図でこれらを両立して描く事は出来ない。 また正角図法では、小さな図形における相似性はどの点でも保たれるが、拡大率は各点で異なってくる。地図上の場所による相似比(縮尺)の違いが、正角図法における「歪み」の原因である。テイソーの指示楕円で言えば、正角図法ではすべてが正しい円になるが、円の大きさは場所によって変わる。地球面すべてを描く場合は、拡大率が無限大になる点が現れる場合もある。 正角図法では角度が正しく保たれることから、経線と緯線が直交する。しかし逆は言えない。赤道を標準緯線とする円筒図法は経線方向の拡大率と緯線方向の拡大率が異なる場合があり、この場合でも経線と緯線は直交するが、他の角度は保たれない。
※この「正角図法の特徴」の解説は、「正角図法」の解説の一部です。
「正角図法の特徴」を含む「正角図法」の記事については、「正角図法」の概要を参照ください。
- 正角図法の特徴のページへのリンク