小平次元 1 の曲面
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2019/08/25 20:18 UTC 版)
「エンリケス・小平の分類」の記事における「小平次元 1 の曲面」の解説
楕円曲面は、楕円ファイバーを持つ曲面である。楕円ファイバーとは、有限個のファイバーを除く全てのファーバーが種数 1 の滑らかな既約曲線であるような曲線 B への全射正則写像が存在する場合を言う。そのようなファイバーの生成ファイバーは、B の函数体上の種数 1 の曲線である。逆に、曲線の函数体上の種数 1 の曲線が与えられると、相対的極小モデルは楕円曲面となる。小平や他の研究者は、全ての楕円曲線を完全に記述した。特に、小平は、可能な特異ファイバーの完全な表を記述した。楕円曲面の理論は、離散付値環(例えば、p-進整数の環)とデデキント整域(例えば数体の整数環)による楕円曲線の固有な正則モデルの理論に似ている。 標数が 2 や 3 のとき、ほとんど全てのファイバーが単純なノードを持つ有理曲線であるような準楕円曲面(quasi-elliptic)が得られる。単純なノードは「退化した楕円曲線」である。 小平次元 1 の全ての曲面は、楕円曲面(標数 2, 3 のときは準楕円曲面)であるが、逆は正しくない。楕円曲面は、小平次元 −∞, 0, や 1 となることも可能である。全てのエンリケス曲面や全ての超楕円曲面(hyperelliptic surface)や全ての小平曲面(英語版)(Kodaira surface)は楕円曲面であり、K3曲面やアーベル曲面や有理曲面の中には楕円曲面が存在し、これらの例は小平次元が 1 より小さい。基礎となる曲線 B の種数が少なくとも 2 か 2 以上である場合は、常に小平次元は 1 であるが、小平次元が 1 であるが B の種数が 0 や 1 であるような楕円曲面も存在する。 不変量: c12 = 0, c2≥ 0. 例: E が楕円曲線で B の種数が少なくとも 2 の曲線であれば、E × B は小平次元 1 の楕円曲面である。
※この「小平次元 1 の曲面」の解説は、「エンリケス・小平の分類」の解説の一部です。
「小平次元 1 の曲面」を含む「エンリケス・小平の分類」の記事については、「エンリケス・小平の分類」の概要を参照ください。
- 小平次元 1 の曲面のページへのリンク