代数学における実数
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/04/03 06:03 UTC 版)
実数の集合 R は体の構造を持っており、実数を係数とした多項式や実数の拡大体を考えることができる。ここで実数が極大順序体であることにより実数係数の多項式は 3 次以上なら既約にならない。したがって R の有限次元拡大になっている可換体は R 自身と複素数体 C しかなく、可換性を外してもほかの有限次拡大体は四元数体 H しかない。 数論的に重要と見なされる位相群に(Q の)イデアル類群 C があるが、その単位元の連結成分は加法群 R と同型である。Q のアデール A を Q の乗法群で割った A/Q× へのこの C の正規部分群の作用の理解がアラン・コンヌによるリーマン予想プログラムの一部分をなしている。 代数体のうちで複素数体への埋め込み先が必ず実数に含まれるようなものは総実代数体とよばれ、代数的整数論において重要な役割を果たしている。
※この「代数学における実数」の解説は、「実数」の解説の一部です。
「代数学における実数」を含む「実数」の記事については、「実数」の概要を参照ください。
- 代数学における実数のページへのリンク