一般的な回帰分析との違い
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/07/07 03:45 UTC 版)
「関数同定問題」の記事における「一般的な回帰分析との違い」の解説
一般的な回帰分析ではパラメータの最適化のために特定済みのモデル構造に対して探索を行う一方で、関数同定問題では演繹的な過程を排除して代わりにデータからモデルを推論する。言い換えれば、モデルの構造とパラメータの両方を探索しようとするということである。 このアプローチは非常に大きな探索空間に対してアドバンテージがある。実際に関数同定を行う探索空間が無限の場合だけでなく、モデルの個数が無限である場合にもアドバンテージがある。無限個のモデルのどれかは有限個のデータセット(モデルの複雑さは人為的に定めない)に完全に適合すると考えられる。これは一般的な回帰分析に比べて関数同定アルゴリズムは適切なモデルとパラメータ設定を見つけるのに長時間を要するかもしれないことを意味している。これはデータを生成するシステムに対する知識に基づいて基本単位の集合を制限することで軽減することができるが、最終的に関数同定を利用するかはどれだけシステムについての知識があるかで決定する。 それでも関数同定の特徴は利点がある。進化的アルゴリズムは効果的に探索空間を探索するために多様性が要求されるので、最終的な結果は高得点のモデルが選択されると考えられる。このコレクションのテストは根底の過程のより良い見識を提供でき、また解の正確性と簡素さの要求により適合する近似解をユーザーに与えることができる。
※この「一般的な回帰分析との違い」の解説は、「関数同定問題」の解説の一部です。
「一般的な回帰分析との違い」を含む「関数同定問題」の記事については、「関数同定問題」の概要を参照ください。
- 一般的な回帰分析との違いのページへのリンク