ランダムウォーク法
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/07/07 09:50 UTC 版)
「マルコフ連鎖モンテカルロ法」の記事における「ランダムウォーク法」の解説
マルコフ連鎖モンテカルロ法 (MCMC) では、均衡分布の近辺を小さなステップで無作為に動き回る粒子を想定したアルゴリズムが多い。これをランダムウォーク(酔歩)という。この方法は実装や解析が容易だが、粒子はしばしば折り返して既に調べた空間を調べ始めてしまうため、粒子が全空間を調べるのに長い時間がかかってしまう。以下にランダムウォークを用いたMCMCのいくつかを並べる: メトロポリス・ヘイスティングス法:提案密度(proposal density)によって新しい候補を提案し、提案された候補を棄却もしくは採択する手続き用いてマルコフ連鎖を生成する。下記の様々な手法を特別な方法として含む、最も一般的なMCMCである。 ギブスサンプリング:対象となる確率分布の条件付き分布を用いて状態を更新するMCMCである。必要となる全ての条件付分布からの乱数が正確に生成できることを必要とする。必ず提案が採択されるメトロポリス・ヘイスティングス法と捉えることもできる。他の多くの手法で必要となる、調整パラメータを基本的に必要としないことも、この手法がよく用いられる理由の一つである。 スライスサンプリング:密度関数の曲線下の領域を一様にサンプルすることによって、対象となる確率分布を生成することができるという原理に基づく。この手法では垂直方向への一様なサンプリングと、現在の垂直位置の水平方向への、密度関数の「スライス」のサンプリングが交互に行われる。 MTM アルゴリズム(英語版):M-H アルゴリズムの変種で各点において複数の試行を行う。一般的にこの手法は一回ごとの歩幅を大きめにとることができ、高次元にまつわる問題の解消に役立つ。
※この「ランダムウォーク法」の解説は、「マルコフ連鎖モンテカルロ法」の解説の一部です。
「ランダムウォーク法」を含む「マルコフ連鎖モンテカルロ法」の記事については、「マルコフ連鎖モンテカルロ法」の概要を参照ください。
- ランダムウォーク法のページへのリンク