ストーン双対性
(ポイントレス位相空間論 から転送)
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2023/09/16 21:17 UTC 版)
ストーンの双対性定理(ストーンのそうついせいていり)とは数学における定理で、(非常に弱いある種の制限を満たす)位相空間がある種の性質を満たす束と自然に対応づけられる事を意味し、この対応づけをストーン双対性(Stone duality)という。位相空間論は点集合論に基づいて通常定式化されるが、ストーン双対性により位相空間は束と対応づけられるので、この双対性は点集合論の代わりに束論に基いて位相空間論を定式化(ポイントレス位相空間論(pointless topology))できる事を意味する。この為本稿ではポイントレス位相空間論についても述べる。ストーンの双対性定理はストーンの表現定理の一般化でもある。
概要
位相空間X 上の開集合全体の集合をΩ(X )とすると、Ω(X )は包含関係に関して半順序集合をなす。 しかもΩ(X )は和集合と共通部分について閉じているのでΩ(X )は束であり、 さらに詳しく調べると、Ω(X )は必ず「完備ハイティング代数」という種類の束になる事が示せる。 したがってX にΩ(X )を対応させる事で位相空間に完備ハイティング代数を対応させる事ができる。
ストーン双対性は、位相空間としてある種の弱い性質(sober性)を満たすものに限定し、さらに完備ハイティング代数の方も「空間的」という性質を満たすものに限定するとこの対応関係がいわば「全単射」になるという趣旨の定理である。
ストーン双対性の厳密な定式化には圏論の言葉を用いる必要があるので、まずは圏の概念を簡単に紹介する。 圏(category)とは「対象」の集まりと「射」 の集まりの組の事で、対象 (object)とは直観的には研究対象となる集合の事を指し、射 (morphism)とは対象から対象への写像の事を指す[注釈 1]。例えば位相空間の圏Topの対象と射はそれぞれ位相空間と連続写像であり、群の圏Grpの対象と射はそれぞれ群と群準同型写像である。
以下の章で、ストーン双対性の記述に必要な概念を順に述べていく。
sober空間
sober空間は以下のように定義される:
定義(sober空間) ― 位相空間X が既約 (irreducible) であるとは X が2つの閉な真部分集合
本稿は英語版のStone dualityの項目、pointless topologyの項目、およびこれらの関連項目を参考にして執筆された。
以下は英語版に記載されていた参考文献を写したものである:
- ストーン双対性の参考文献
- Burris, Stanley N., and H.P. Sankappanavar, H. P., 1981. A Course in Universal Algebra. Springer-Verlag. ISBN 3-540-90578-2. (available free online at the website mentioned)
- P. T. Johnstone, Stone Spaces, Cambridge Studies in Advanced Mathematics 3, Cambridge University Press, Cambridge, 1982. ISBN 0-521-23893-5.
- Pedicchio, Maria Cristina; Tholen, Walter, eds (2004). Categorical foundations. Special topics in order, topology, algebra, and sheaf theory. Encyclopedia of Mathematics and Its Applications. 97. Cambridge: Cambridge University Press. ISBN 0-521-83414-7. Zbl 1034.18001
- Vickers, Steven (1989). Topology via logic. Cambridge Tracts in Theoretical Computer Science. 5. Cambridge: Cambridge University Press. ISBN 0-521-36062-5. Zbl 0668.54001
- Abstract Stone Duality
- ポイントレス位相空間論の参考文献
- Johnstone, Peter T., 1983, "The point of pointless topology," Bulletin of the American Mathematical Society 8(1): 41-53.
ポイントレス位相空間論
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/04/10 07:19 UTC 版)
「ストーン双対性」の記事における「ポイントレス位相空間論」の解説
ストーンの双対性定理はsober性を満たす位相空間の圏Sob が空間的完備ハイティング代数の圏SFrm との対応関係を示しているが、Sob からSFrm への関手Ωは射の向きを反対にするもの(反変関手)である為、Sob とSFrm では射の向きが反転してしまっており、両者は完全に同一視できるわけではない。 そこで圏SFrm の射の向きを形式的に全て逆向きにした圏(双対圏)を考え、この圏をSLoc と書くと、SobとSLoc は射の向きも同一になる。(なおSLoc の射はあくまでSFrm の射の向きを形式的に反転したものなので、SLoc の射L→ Mは通常の写像のようにL の元に M の元を対応させるわけではない。)SLoc の対象をロケール(locale)という。すなわちSLoc は空間的という条件を満たすロケール(Spatial LOCale)の圏である。 Sob とSLoc は射の向きを込めて同型なので、(sober性を満たす)位相空間の圏Sob の代わりに空間的ロケールの圏SLoc をベースにして位相空間論を展開する事ができる。これをポイントレス位相空間論(pointless topology。意訳すれば「点集合論に基づかない位相空間論」)という。 ポイントレス位相空間論の利点の一つは、通常の位相空間論であれば選択公理に基づかなければ証明できない定理であっても、ポイントレス位相空間論におけるその定理の対応物は選択公理に頼らず証明できる場合がある事である。これは選択公理を持たないトポスを考える場合に有利に働く。 ただし、位相空間と空間的ロケールの対応関係は位相空間がsober性を満たす場合にしか成り立っていない事が原因で、通常の位相空間論における定理や概念とポイントレス位相空間論におけるそれらの対応物が若干異なった概念になってしまう事がある事に注意しなければならない。 そのような概念の例として直積がある。sober性を満たさない位相空間に対応するロケールの直積には集合としては等しいがロケールとしては等しくない2つの部分ロケールが存在する事がありうるが、一方で位相空間論における直積では2つの部分空間が等しいのはそれらが点集合として等しい場合に限る。 また位相空間の部分空間とロケールの部分ロケールも異なる概念である。例えば有理数体 Q {\displaystyle \mathbb {Q} } を位相空間とみなした場合、 Q {\displaystyle \mathbb {Q} } には可算個の部分位相空間しか存在しないが、一方で Q {\displaystyle \mathbb {Q} } に対応するロケールには[実数の濃度]個の部分ロケールが存在する。
※この「ポイントレス位相空間論」の解説は、「ストーン双対性」の解説の一部です。
「ポイントレス位相空間論」を含む「ストーン双対性」の記事については、「ストーン双対性」の概要を参照ください。
- ポイントレス位相空間論のページへのリンク