滑空 滑空の概要

滑空

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/09/28 23:33 UTC 版)

概要

技術的に言えば、上記の各機種はレクレーションのために滑空または滑翔(ソアリング)を行うグライダーの型式の差に過ぎず、海上の潮風の中でセールボートとウイングサーフィンが区分されているのと同じである[2]

滑翔(ソアリング)

滑翔(ソアリング)」とは、正確には、航空機が上昇気流によって高度または速度を増加する状況を指す。

本項において「滑空(グライディング)」という言葉は、グライダーのスポーツ目的の飛行だけを示す。

ソアリングを行う条件が充分に良いときには、熟練したパイロットならば、出発点から片道数100 kmの飛行を行い、帰還することが出来る。時として飛行距離は1,000 km以上に達する[3]。ただし、天候が悪化すると、どこかに着陸しなければならなくなるが、モーターグライダーならばエンジンを再始動すればそれを免れることが出来る。

グライダーパイロットの多くは単に飛行の達成感を満喫するだけであるが、競技派のパイロットは定められた周回コースの飛行を指向する。このような競技では、パイロットの飛行技術と同時に、気象条件を利用する技能が試される。

多くの国で、地区競技・全国競技が開催され、1年おきに世界滑空選手権が開催されている[4]

動力付き航空機(飛行機など)とウインチの2つが、グライダーを発航させる主要な手段である。モーターグライダーの自力発航を除き、上記及びその他の発航手段は、いずれもパイロット以外の要員の助力を必要とする。グライダークラブは飛行場と設備の区分利用と、新人の養成と、高度の安全性を維持するために設立されている。

歴史

重航空機の発達は、ジョージ・ケーリー卿の御者が飛行した1853年から、ライト兄弟に至る半世紀間に、主としてグライダーによって為された。

ヴェルサイユ条約

ただし、スポーツとしての滑空(グライディング)は、第一次世界大戦後に初めて、ヴェルサイユ条約が原因で始まったものである[5]

同条約は、ドイツに対して単座航空機の製造・飛行を厳しく制限した(ヴェルサイユ条約#軍備条項)。その結果、192030年代には、世界各国の航空界が飛行機の性能向上を進めたのに対して、ドイツは効率の高いグライダーの設計や飛行の向上に努め、より遠く早く飛行するために自然力の利用を指向した。この活動は、将来の再軍備の布石として、時の政府に後押しされていた。後年、第三帝国ジュネーブ条約を破棄して第二次世界大戦準備に進んだとき、グライダーの研究と訓練は熟練した軍用機の航空要員の供給源となり、中にはエース・パイロットになった者が何人もいる。

1920年代

ドイツの第1回滑空競技は、1920年[6]ヴァッサークッペ(Wasserkuppe)で[7]、オスカー・ウルジヌス(Oskar Urusinus)の計画・指導の下に行われた。最高記録は2分間で、距離の世界記録2 kmを樹立した[6]

1930年代

10年の間に、滑空競技は国際的な行事になり、滞空時間や飛行距離は著しく向上した。1931年には、ギュンター・グレンホフ(Gunter Grönhoff)がミュンヘンからチェコスロバキアまで272 kmを飛行し、更に飛べる余裕があった[6]

1930年代には、滑空活動は世界各国に普及した。1936年夏季オリンピック(ベルリン)では、滑空はデモンストレーション競技になり、1940年(東京の予定)には正式競技になる計画であった[6]。ドイツでは、それに備えてオリンピック用のグライダーを開発したが第二次世界大戦によって中断した。

1939年までの主要なグライダーの記録は、ロシア人によって保持され、距離は748 kmに達した[6]

1940年代

1940年代、つまり第二次世界大戦中は、ヨーロッパにおける民間の滑空活動は、大部分が中断された。軍用グライダーによる作戦行動が行われたが、これらは滑翔ではなく、滑空スポーツとは無関係である。しかしながら、エーリヒ・ハルトマン(Erich Hartmann)をはじめドイツの戦闘機のエース・パイロットに、グライダー訓練の経験者が数人含まれている。

1950年代

1950年代には、多くの国々で、大勢の訓練を経たグライダー・パイロットが飛行を続けたがっており、その多くは航空技術者でもあった。彼らは、グライダーの飛行クラブと製作所を共に発足させ、その中には現在まで存続しているものもある。

この動きはグライダーと滑空活動を共に活性化し、アメリカ滑空協会のメンバー数を1,000名から現在の12,500名まで成長させた。グライダー・パイロット人口の増加・知識の拡大・技術の発展は、新記録の樹立に貢献し、戦前の高度記録は1950年までに倍増し、飛行距離1,000 kmの大台は1964年に突破された[6]

現代

ガラス繊維強化プラスチック炭素繊維強化プラスチックのような新素材は翼の平面形や翼断面を進歩させ、電子装備G.P.S.、天気予報が発達したので、従来は特別な例とされたような高い水準の飛行を、多くのパイロットが達成するようになった。2006年現在では500人ものパイロットが1,000 kmの飛行を行っている[8]

滑空スポーツの発祥の地であるドイツは、現在でも中心地であり、世界のグライダー・パイロット人口の30 %を擁し、3大グライダー・メーカーが存在する[9]。しかしながら、このスポーツは多くの国々にも取り入れられ、現在11万6,000名のパイロットが活動している[10]。これに加えて軍の教習生が存在するが、人数は不詳である。更に毎年多くの人々がグライダーの初飛行を体験している。

オリンピック競技

滑空競技は2つの理由によって、戦後になってもオリンピック種目に復活しなかった。一つ目は、戦後に残されたグライダーの機数の不足である。また、競技に使う単一の機種の選定に合意が得られなかったこともある。単一機種の指定は、新設計の発展を妨げるという意見もあった[6]

滑空競技などのエア・スポーツをオリンピック種目に復活させる提案は、F.A.I.(国際航空連盟)などの国際組織によって行われたが、一般の理解度が低いので否決されている[11]

世界滑空選手権大会

オリンピック競技に代わるものに、世界滑空選手権大会がある。第1回は、1937年にワッサークッペで開催された。第二次世界大戦以降は2年おきに開催されている[6]

同競技会には、男女を問わないオープン競技が6種目と、女性種目と2つのジュニア種目の計9種目が含まれている。

ソアリング(滑翔)

グライダーは、機体の沈下速度より強い上昇気流の中では、位置エネルギーを獲得しながら何時間も空中に留まることが出来る[12]。通常の上昇気流の源は下記のものである。

  • サーマル :暖かい空気の上昇気流
  • 斜面上昇 :風が丘の面に吹き付け、上に吹き上げられるときに発生
  • ウエーブ(山岳波)の上昇 :大気中の定常波、流れの表面の漣のようなもの

グライダーは、斜面上昇では、その地形から600 m以上の高さまで上昇することは、ほとんど無い。サーマルでは、気候と地形にもよるが、平野では3,000 mに達し、山地ではもっと高く上昇する[13]。ウエーブ(山岳波)の上昇では、グライダーが15,447 mまで上昇した[14]

雲の中のような、コントロールできない空域まで上昇することを許す国もあるが、多くの国の場合は雲底に達する前に上昇を止めなければならない。

サーマル(熱上昇気流)

サーマルは、太陽に温められた地表の上で形成される上昇気流である[15]。空気が十分な水分を含んでいる場合は、上昇中に凝縮して積雲を作る。サーマルに遭遇したとき、パイロットは中に留まれるように旋回飛行を行い、高度を稼ぎ、それから脱出して次のサーマルに向かう。これが、いわゆるサーマリング(サーマル飛行)である。サーマルの上昇率は、条件によるが、通常は1秒に数 mである。

サーマルは風や地形によっては列状に形成される場合もあり、そのときは雲の列が出来る。このような場合は、上昇を続けながら直線飛行をすることが出来る。

空気の湿度が低い場合、あるいは気温の逆転によって暖かい空気が含んでいる水分が凝縮するほどの高度まで上昇しない場合は、サーマルが積雲を形成しない。パイロットが雲や砂煙(ダスト・デビル)などの目印抜きでサーマルを見つけるには、精密な昇降計、つまりグライダーの垂直の飛行速度を敏速に示す計器を使って、技能と運の限りを尽くさなければならない。

サーマルが見つかる場所の代表は、街の上・耕されたばかりの畑の上・アスファルト道路の上などといわれるが、どの様な地表の状態とも結びつかない場合もある。時として、火事や発電所の煙突の上にサーマルが発生する。

サーマルは熱せられた空気の上昇であるから、中緯度地方での利用期間は春から夏の終りまでの間であり、冬は弱い。斜面上昇やウエーブの上昇は寒い時期も有効である。

斜面上昇気流

斜面上昇気流は、丘の側面の上昇気流を利用するものである。斜面が太陽に面しているときは、斜面上昇はサーマルによって増強される[16]

定常風が吹き続ける斜面では、限りなく滞空が可能であり、滞空時間の記録挑戦の限界は疲労の限界への挑戦という危険な行為と同じである[17]

ウエーブ(山岳波)の上昇気流

山に発生する空気の波による強力な上昇 / 下降気流は、1933年にグライダー・パイロットのワォルフ・ヒルト(Wolf Hirth)によって発見された[18]。この波(ウエーブ)は極めて高い高度に達するので、利用するパイロットは酸欠を防ぐために酸素吸入を必要とする。

ウエーブ(山岳波)の上昇気流は、風と直角に長く横たわるレンズ雲を発生する[19]。2006年8月29日にアルゼンチンのエル・カラファテ(El Calafate)上空で樹立された現在の高度記録15,453 mは、ウエーブ上昇気流を利用したものである。パイロットは、スティーブ・フォセット(Steve Fossett)とアイナー・エネヴォルドソン(Einar Enevoldson)で、耐圧服を着用した[20]

また、現在の距離の世界記録3,008 km(2003年1月21日樹立)[21]もクラウス・オールマン(Klaus Ohlmann)が南アメリカのウエーブを利用した飛行である。

まれに生ずるウエーブ現象として「モーニング・グローリー」があり、巻雲が強力な上昇気流を発生する。オーストラリアカーペンタリア湾付近などで、春季に利用できる[22]

その他の上昇気流

2つの気団がぶつかる境界をコンバージェンス・ゾーン(Convergence Zone, 収束帯)と言い、海風が吹き込む地帯、あるいは砂漠地帯に出来る[23]。海風の場合、海から来る冷たい空気が陸上の暖かい空気にぶつかり、下にもぐりこんだ境界は浅い寒冷前線のようになる。この境界に沿ってグライダーを飛ばせば、斜面上昇と同じように高度を獲得出来る[24]。コンバージェンス・ゾーンは長い距離にわたって生じるので、直線飛行をしながら高度を稼ぐことが出来る。

ダイナミック・ソアリング」というテクニックも利用できる。これは水平速度が違う気団の境界を往復しながら力学的エネルギーを稼ぐ方法である。このように風速傾斜の大きい場所は通常は地表に近く、アホウドリミズナギドリなどの海鳥が波間を使ってこの飛行方法を行っているが、航空機であるグライダーが安全に利用することは出来ない。

動画説明 https://www.youtube.com/watch?v=uMX2wCJga8g

RC(ラジオ・コントロール)グライダーでは尾根を使ったダイナミック・ソアリング[25]によるスピード競技が行われている。地面効果#動物を参照。


  1. ^ FAI web site”. 2009年2月3日閲覧。
  2. ^ Frequently asked questions about gliding (PDF)”. 2006年8月24日閲覧。
  3. ^ Gliding World Records”. 2006年12月21日閲覧。
  4. ^ Information about gliding competitions (PDF)”. 2006年8月24日閲覧。
  5. ^ History of gliding (PDF)”. 2006年8月24日閲覧。
  6. ^ a b c d e f g h Welch, Ann (1980). The Story of Gliding 2nd edition. John Murray. ISBN 0-7195-3659-6 
  7. ^ Wasserkuppe, gliding and model gliding”. 2006年9月28日閲覧。
  8. ^ List of pilots who have flown over 1,000 km”. 2006年9月28日閲覧。
  9. ^ FAI membership summary”. 2006年8月24日閲覧。
  10. ^ FAI membership summary”. 2006年8月24日閲覧。
  11. ^ FAI the Olympics”. 2006年8月24日閲覧。
  12. ^ Visual explanation of soaring”. 2006年8月24日閲覧。
  13. ^ Mountain flying”. 2006年9月14日閲覧。
  14. ^ Altitude record”. 2006年9月1日閲覧。
  15. ^ Diagram of thermals”. 2006年9月5日閲覧。
  16. ^ Diagram of ridge lift”. 2006年9月5日閲覧。
  17. ^ Duration record”. 2006年8月24日閲覧。
  18. ^ Article about wave lift”. 2006年9月28日閲覧。
  19. ^ Diagram of wave lift”. 2006年9月5日閲覧。
  20. ^ Fossett, Enevoldson Bringing Record-Setting Glider to EAA AirVenture Oshkosh”. 2008年1月11日閲覧。
  21. ^ Distance record”. 2006年8月24日閲覧。
  22. ^ Morning Glory”. 2006年9月27日閲覧。
  23. ^ Bradbury, Tom (2000). Meteorology and Flight: Pilot's Guide to Weather (Flying & Gliding). A & C Black. ISBN 0-7136-4226-2 
  24. ^ Reichmann, Helmut (2005). Streckensegelflug. Motorbuch Verlag. ISBN 3-613-02479-9 
  25. ^ はえー!800km/hオーバーで飛ぶ世界一速いRCグライダー - わちょほほほ 車動画情報とかなんかそんなの”. わちょほほほ 車動画情報とかなんかそんなの. 2019年2月21日閲覧。
  26. ^ Further information on launch methods”. 2006年9月3日閲覧。
  27. ^ Aerotowing explained”. 2006年9月3日閲覧。
  28. ^ Federal Aviation Administration (2003). “Launch and Recovery Procedures and Flight Maneuvers”. Glider Flying Handbook. http://www.faa.gov/library/manuals/aircraft/glider_handbook/ 2006年11月25日閲覧。 
  29. ^ On-line debate on the relative merits of high tow versus low tow and where each method is used”. 2006年10月9日閲覧。
  30. ^ Further information on launch methods”. 2006年9月3日閲覧。
  31. ^ Autotow launching information and discussion”. 2006年9月28日閲覧。
  32. ^ Bungee launching explained”. 2006年9月28日閲覧。
  33. ^ How gliders fly cross country”. 2006年9月28日閲覧。
  34. ^ FAI World records page”. 2006年9月6日閲覧。
  35. ^ On Line Contest”. 2006年8月24日閲覧。
  36. ^ Introduction to gliding competitions”. 2006年9月28日閲覧。
  37. ^ Typical competition results”. 2006年8月24日閲覧。
  38. ^ How competitions are monitored and scored”. 2006年9月28日閲覧。
  39. ^ Sailplane Grand Prix”. 2006年8月24日閲覧。
  40. ^ On Line Contest”. 2006年8月24日閲覧。
  41. ^ Listing of lowest ranked participants in the On Line Contest”. 2006年8月24日閲覧。
  42. ^ MacCready Theory”. 2006年8月24日閲覧。
  43. ^ Pettersson, Åke (October-November 2006). “Letters”. Sailplane & Gliding (British Gliding Association) 57 (5): 6. 
  44. ^ How gliders fly cross country”. 2006年9月28日閲覧。
  45. ^ a b Water ballast”. 2006年9月28日閲覧。
  46. ^ a b Eckschmiedt, George; John Bisscheroux (February/March 2004). “A Modest Proposal (1.3 Mb)” (PDF). Free Flight (Soaring Association of Canada) 2004 (1): 8–9, 18. http://www.wgc.mb.ca/sac/freeflight/04_01.pdf 2008年1月8日閲覧。. 
  47. ^ FAI Badges page”. 2006年9月7日閲覧。
  48. ^ FAI Sporting Code”. 2006年8月24日閲覧。
  49. ^ Cross country flying and landing out”. 2006年9月4日閲覧。
  50. ^ Code of practice for field landings”. 2006年9月4日閲覧。
  51. ^ Information about self-sustaining gliders”. 2006年9月4日閲覧。
  52. ^ Guide to Self-launching Sailplane Operation”. 2006年9月4日閲覧。
  53. ^ Information about gliding aerobatics”. 2006年8月24日閲覧。
  54. ^ FAI Aerobatics Catalogue (PDF)”. 2006年10月9日閲覧。
  55. ^ Challenges facing gliding reported to FAI”. 2006年9月18日閲覧。
  56. ^ a b c Every, Douglas (October/November 2006). “Accident/incident Summaries”. Sailplane & Gliding (British Gliding Association) 57 (5): 61. 
  57. ^ How safe is gliding?”. 2006年9月28日閲覧。
  58. ^ How safe is gliding?”. 2006年9月28日閲覧。
  59. ^ Analysis of serious and fatal gliding accidents in France”. 2006年9月28日閲覧。
  60. ^ Summary of collision avoidance techniques”. 2006年10月9日閲覧。
  61. ^ Learning to glide”. 2006年9月18日閲覧。
  62. ^ Information about learning to glide”. 2006年8月24日閲覧。






品詞の分類


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「滑空」の関連用語

滑空のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



滑空のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの滑空 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS