モース-ケリー集合論 モース-ケリー集合論の概要

モース-ケリー集合論

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2023/12/18 01:48 UTC 版)

モース-ケリー集合論は、数学者のジョン・ルロイ・ケリー英語版アンソニー・モース英語版にちなんだ名前であり、Wang (1949)によって初めて言及され、後にケリーの教科書 General Topology (1955)の付録で大学院レベルのトポロジーの入門として示された。ケリーは、自身の本のシステムが、トアルフ・スコーレムとモースによるシステムの変形であると述べた。モース自身のバージョンは、後に彼の著書 A Theory of Sets (1965)に登場した。

ZFCの言語における言明がNBGで証明可能であるのは、それがZFCで証明可能である場合かつその場合に限るという点で、NBGはZFC保存拡大である一方、モース-ケリー集合論は真の拡大である。クラス内包の公理型を有限個の公理で置き換えることができるNBGとは異なり、モース-ケリー集合論は有限公理化することができない。

MKの公理と存在論

NBGとMKでは存在論が共通する。議論領域真のクラスからなる。ほかのクラスの要素となるクラスを集合と呼ぶ。集合でないクラスは真のクラスである。原始的な原子文英語版(atomic sentence)には帰属関係や等号を含む.

クラス内包に関する例外と細かな点を無視すれば、以下の公理はNBGと同じになる。公理の記号表現には以下の表記法を用いる:

  • M 以外の大文字は、クラスの変数とする(外延性、クラス内包、基礎の各公理に現れる)。小文字は真のクラスでない変数を表す(∈の左側に現れるため)。MKは1ソートの理論であるため、この表記規則は単にわかりやすくするだけのものである。
  • モナド的述語 は「クラス x は集合である」という意味だが、 と略記する。
  • 空集合 で定義する。
  • クラス V はすべての可能な集合を要素に持つ全体クラスであり、 で定義される。 Vフォン・ノイマン宇宙でもある。

外延性: 同じ要素を持つクラスは同じクラスである。

同じ外延性を持つ集合とクラスは同一になる。そのため、逆に見えるにもかかわらずMKは2ソート理論ではない。

基礎: 空でない各クラス A は、少なくともその要素の1つとは互いに素である。

クラス内包: φ(x) をMKの言語における任意の論理式とする。ここで x自由変項Y は束縛変項である。 φ(x) は集合や真のクラスであるパラメータを含みうる。さらに結果的に、 φ(x) の中で量化された変項はクラスの変項であり、集合の変項ではない。これが、 MK が NBG と唯一異なる点である。 すると、 が真となるような集合 x のみからなる要素をもつクラス が存在する。形式的には、 Y が φ で自由変項でない場合は以下のようになる。

: 任意の集合 xy に対して、要素が xy のみからなる集合 が存在する。

対の公理によって、順序のない対から順序対 を、通常のように として定義できる。順序対があるため、クラス内包から集合上の関係関数を順序対上の集合として定義でき、次の公理が可能になる。

サイズ制限: VC との間に全単射が存在するとき、かつそのときに限り、C は真のクラスである。

この公理の形式的なバージョンは置換公理と類似し、クラス関数 F で具体的に表現する。次の節では、サイズ制限公理が選択公理の通常の形よりどの程度強いかを論じる。

冪集合: p を、要素が集合 a の可能なすべての部分集合であるようなクラスとする。すると p は集合である。

和集合: を集合 a の和クラス(a の要素すべての和集合)とする。すると s は集合である。

無限: 以下の性質を持つ帰納的な集合 y が存在する: (i) 空集合y の要素である。 (ii) xy の要素であれば、 y の要素である。

冪集合の公理と和集合の公理における ps は全称量化であり、存在量化でないことに注意せよ。これはクラス内包公理が ps の存在を示すのに十分であるのと対称的である。冪集合の公理と和集合の公理からは、 ps が真のクラスでないことだけがわかる。

上記の公理は以下の集合論とも共通する。

  • ZFC, NBG: 対、冪集合、和集合、無限
  • NBG, (量化変項が集合に制限されている場合の)ZFC: 外延性、基礎
  • NBG: サイズ制限

議論

Monk (1980) と Rubin (1967) はMKを中心に扱った集合論の教科書である。Rubin の存在論アトム英語版(urelement) を含む。これらの著者と Mendelson (1997: 287) は、 MK は集合論に期待されることをできるが、 ZFCNBG よりも容易に扱えると発表した。

MK は ZFC や、その保存拡大であって真のクラスを持つよく知られた集合論である NBG よりも厳密に強い。実際、 NBG および結果的に ZFC も、 MK の中で無矛盾性を証明できる。 MK の強さはクラス内包の公理型が非可述英語版であることに起因する。すなわち、 φ(x) はクラスの範囲での量化変項を含みうる。 NBG のクラス内包の公理型における量化変項は集合に制限されているため、 NBG のクラス内包は可述的でなければならない。(集合に対する分離の公理も NBG では非可述的である。なぜなら、 φ(x) の中の量化子はすべての集合の範囲にありうるためである。)NBG のクラス内包の公理型は有限個の公理で置き換えることができるが、これは MK では不可能である。 MK は、強到達不能基数の存在を主張する公理で拡張された ZFC と相対的に無矛盾である。

サイズ制限公理の唯一の長所は大域選択公理英語版を含意するという点である。サイズ制限公理は Rubin (1967), Monk (1980), Mendelson (1997) には現れない。代わりに、これらの著者は通常の形式の局所選択公理と、クラス関数の定義域が集合であるならばその値域も集合であることを主張する「置換公理」[1]を用いている。置換公理は、サイズ制限公理で証明できるすべて(ある形式の選択公理を除く)を証明できる。

サイズ制限公理と I が集合であること (故に宇宙は空集合でない)から空集合の集合性を証明できる。故に空集合の公理は不要である。もちろんこのような公理は追加できるが、その場合は公理に細かな修正が必要になりうる。集合 I極限順序数 より大きい集合になりうるため、 I と同一とはみなされない。この場合、 の存在は何らかの形式のサイズ制限公理に基づく。

フォン・ノイマン順序数のクラスは整列可能である。(パラドックスの可能性があるため)これは集合ではなく、故にこのクラスは真のクラスであり、そしてすべての真のクラスは V と同じ大きさを持つ。故に V も整列可能である。

MK は、二階述語論理(これが表す二階の対象は述語言語ではなく集合内のものである)を背景に持つ ZFC である、二階の ZFC と混同されうる。二階の ZFC の言語はMK と類似し(同じ外延性を持つ集合とクラスは区別できないが)、実際の証明において、これらの統語的要素はほぼ同一である(同一であるのは MK が強い形のサイズ制限公理を含む場合に限る)。しかし、二階の ZFC の意味論は MK と大きく異なる。例えば、 MK が無矛盾であれば MK は可算な一階モデルを持つが、一方で二階 ZFC は可算モデルを持たない。

モデル理論

ZFC, NBG そして MK はそれぞれ、ZFC におけるフォン・ノイマン宇宙 V で記述されるモデルを持つ。到達不能基数 κ を V の要素とする。そして Def(X) を Δ0 定義可能な X部分集合とする(構成可能宇宙を参照)。すると以下が成り立つ。

  • VκZFC のモデルである。
  • Def(Vκ) は、サイズ制限公理を置換公理と通常の選択公理で置き換えることで大域選択公理を外した、 Mendelson 版の NBG のモデルである。
  • Vκ+1Vκ冪集合であり、 MK のモデルである。

歴史

MK は Wang (1949) により創始され、 J. L. Kelley (1955) General Topology の付録で知られるようになった。後者は次の節に示す公理を用いている。Anthony Morse (1965) A Theory of Sets のシステムはケリーのものと等価であるが、前述の定式化のような標準的な一階述語論理ではなく、特異な形式の言語で定式化されたものであった。非可述的英語版クラス内包公理を含めた最初の集合論はクワインML(Mathematical Logic) であった。これはZFCではなく、新基礎集合論のもとに構築されたものである[2]。 非可述なクラス内包公理は Mostowski (1951) や Lewis (1991) でも提案されている。


  1. ^ 例えば Mendelson (1997), p. 239, axiom R. を参照
  2. ^ ML として引用される文献は QuineMathematical Logic の 1951 年版である。しかし、 ML の要旨は Mendelson (1997), p. 296 が追って理解しやすい。 Mendelson の公理型 ML2 は上記のクラス内包公理と同一である。
  3. ^ Kelley (1955), p. 261, fn †.


「モース-ケリー集合論」の続きの解説一覧



英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  
  •  モース-ケリー集合論のページへのリンク

辞書ショートカット

すべての辞書の索引

「モース-ケリー集合論」の関連用語

モース-ケリー集合論のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



モース-ケリー集合論のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのモース-ケリー集合論 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS