述語論理と論理プログラミング
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/09/12 02:49 UTC 版)
「Prolog」の記事における「述語論理と論理プログラミング」の解説
Prolog のプログラムは一階述語論理に基づいてデータ間の関係を示す命題として記述され、処理系がそれらに単一化(ユニフィケーション)と呼ばれるパターンマッチングを施しながら、与えられた命題が成立するか再帰的手続きによって探索している。 プログラムの実行は述語集合が定義された環境の元で、質問することによってなされるが、これは反駁という述語論理的な証明過程を模して、処理系が用意する導出木と呼ばれるグラフをたどって解を得る過程である。Prolog のもととなるこの演繹手法は導出と呼ばれ、自動定理証明の研究において Prolog 開発以前からよく知られていた。Prolog は、導出において節を頭部が一つの命題からのみなるホーン節に限定したもので、この場合の導出をSLD導出(Selective Linear resolution for Definite clause)と呼ぶ。ホーン節に限定しているということは、つまり、Prolog は任意の述語をそのまま扱えるわけではない。Prolog が述語の形式をホーン節に限定した理由は、もし頭部に項の連言を認めるならば、導出時の計算量が爆発的に増大して、全ての解を得ることの保証が難しくなることが必至だからである。 述語論理を論理的な背景に持つことによって、Prolog のプログラムはその正しさを確認することが比較的容易である。同時に、プログラマは Prolog でプログラミングすることが何を意味するかを明確に理解した上で、プログラムを書いていくことができる。
※この「述語論理と論理プログラミング」の解説は、「Prolog」の解説の一部です。
「述語論理と論理プログラミング」を含む「Prolog」の記事については、「Prolog」の概要を参照ください。
- 述語論理と論理プログラミングのページへのリンク