自乗可積分函数とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > ウィキペディア小見出し辞書 > 自乗可積分函数の意味・解説 

自乗可積分函数

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2025/03/01 08:51 UTC 版)

自乗可積分函数(じじょうかせきぶんかんすう、: square-integrable function)とは、実数値または複素数値可測函数で絶対値の自乗の積分が有限であるものである。すなわち


自乗可積分函数

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/02/17 04:25 UTC 版)

フーリエ変換」の記事における「自乗可積分函数」の解説

以下の表におけるフーリエ変換は (Campbell & Foster 1948), (Erdélyi 1954) あるいは (Kammler 2000) の付録に見つけることができる。 もとの函数ユニタリ周波に関するフーリエ変換ユニタリ・角周波に関するフーリエ変換ユニタリ・角周波に関するフーリエ変換備考 f ( x ) {\displaystyle f(x)} f ^ ( ξ ) = {\displaystyle {\hat {f}}(\xi )=} ∫ − ∞ ∞ f ( x ) e − 2 π i x ξ d x {\displaystyle \int _{-\infty }^{\infty }f(x)e^{-2\pi ix\xi }\,dx} f ^ ( ω ) = {\displaystyle {\hat {f}}(\omega )=} 1 2 π ∫ − ∞ ∞ f ( x ) e − i ω x d x {\displaystyle {\frac {1}{\sqrt {2\pi }}}\int _{-\infty }^{\infty }f(x)e^{-i\omega x}\,dx} f ^ ( ν ) = {\displaystyle {\hat {f}}(\nu )=} ∫ − ∞ ∞ f ( x ) e − i ν x d x {\displaystyle \int _{-\infty }^{\infty }f(x)e^{-i\nu x}\,dx} 201 rect ⁡ ( a x ) {\displaystyle \operatorname {rect} (ax)\,} 1 | a | ⋅ sinc ⁡ ( ξ a ) {\displaystyle {\frac {1}{|a|}}\cdot \operatorname {sinc} \left({\frac {\xi }{a}}\right)} 1 2 π a 2sinc ⁡ ( ω 2 π a ) {\displaystyle {\frac {1}{\sqrt {2\pi a^{2}}}}\cdot \operatorname {sinc} \left({\frac {\omega }{2\pi a}}\right)} 1 | a | ⋅ sinc ⁡ ( ν 2 π a ) {\displaystyle {\frac {1}{|a|}}\cdot \operatorname {sinc} \left({\frac {\nu }{2\pi a}}\right)} 矩形波標準化されsinc関数sinc関数sinc(x) = sin(πx)/(πx)で表される 202 sinc ⁡ ( a x ) {\displaystyle \operatorname {sinc} (ax)\,} 1 | a | ⋅ rect ⁡ ( ξ a ) {\displaystyle {\frac {1}{|a|}}\cdot \operatorname {rect} \left({\frac {\xi }{a}}\right)\,} 1 2 π a 2 ⋅ rect ⁡ ( ω 2 π a ) {\displaystyle {\frac {1}{\sqrt {2\pi a^{2}}}}\cdot \operatorname {rect} \left({\frac {\omega }{2\pi a}}\right)} 1 | a | ⋅ rect ⁡ ( ν 2 π a ) {\displaystyle {\frac {1}{|a|}}\cdot \operatorname {rect} \left({\frac {\nu }{2\pi a}}\right)} 201双対矩形波理想的なローパスフィルターである。sinc関数そのようなフィルターの非因果応答である。 203 sinc 2 ⁡ ( a x ) {\displaystyle \operatorname {sinc} ^{2}(ax)} 1 | a | ⋅ tri ⁡ ( ξ a ) {\displaystyle {\frac {1}{|a|}}\cdot \operatorname {tri} \left({\frac {\xi }{a}}\right)} 1 2 π a 2tri ⁡ ( ω 2 π a ) {\displaystyle {\frac {1}{\sqrt {2\pi a^{2}}}}\cdot \operatorname {tri} \left({\frac {\omega }{2\pi a}}\right)} 1 | a | ⋅ tri ⁡ ( ν 2 π a ) {\displaystyle {\frac {1}{|a|}}\cdot \operatorname {tri} \left({\frac {\nu }{2\pi a}}\right)} tri(x)は三角形関数である。 204 tri ⁡ ( a x ) {\displaystyle \operatorname {tri} (ax)} 1 | a | ⋅ sinc 2 ⁡ ( ξ a ) {\displaystyle {\frac {1}{|a|}}\cdot \operatorname {sinc} ^{2}\left({\frac {\xi }{a}}\right)\,} 1 2 π a 2sinc 2 ⁡ ( ω 2 π a ) {\displaystyle {\frac {1}{\sqrt {2\pi a^{2}}}}\cdot \operatorname {sinc} ^{2}\left({\frac {\omega }{2\pi a}}\right)} 1 | a | ⋅ sinc 2 ⁡ ( ν 2 π a ) {\displaystyle {\frac {1}{|a|}}\cdot \operatorname {sinc} ^{2}\left({\frac {\nu }{2\pi a}}\right)} 203双対 205 e − a x u ( x ) {\displaystyle e^{-ax}u(x)\,} 1 a + 2 π i ξ {\displaystyle {\frac {1}{a+2\pi i\xi }}} 1 2 π ( a + i ω ) {\displaystyle {\frac {1}{{\sqrt {2\pi }}(a+i\omega )}}} 1 a + i ν {\displaystyle {\frac {1}{a+i\nu }}} u(x)はヘビサイド単位ステップ関数であり、a>0 206 e − α x 2 {\displaystyle e^{-\alpha x^{2}}\,} π α ⋅ e − ( π ξ ) 2 α {\displaystyle {\sqrt {\frac {\pi }{\alpha }}}\cdot e^{-{\frac {(\pi \xi )^{2}}{\alpha }}}} 1 2 α ⋅ e − ω 2 4 α {\displaystyle {\frac {1}{\sqrt {2\alpha }}}\cdot e^{-{\frac {\omega ^{2}}{4\alpha }}}} π α ⋅ e − ν 2 4 α {\displaystyle {\sqrt {\frac {\pi }{\alpha }}}\cdot e^{-{\frac {\nu ^{2}}{4\alpha }}}} これが示すものは、ガウス関数exp(−αx2)でαを選んだ場合はユニタリフーリエ変換である。. Re(α)>0で積分可能である 207 e − a | x | {\displaystyle \operatorname {e} ^{-a|x|}\,} 2 a a 2 + 4 π 2 ξ 2 {\displaystyle {\frac {2a}{a^{2}+4\pi ^{2}\xi ^{2}}}} 2 π ⋅ a a 2 + ω 2 {\displaystyle {\sqrt {\frac {2}{\pi }}}\cdot {\frac {a}{a^{2}+\omega ^{2}}}} 2 a a 2 + ν 2 {\displaystyle {\frac {2a}{a^{2}+\nu ^{2}}}} a>0である 208 J n ( x ) x {\displaystyle {\frac {J_{n}(x)}{x}}\,} 2 i n ( − i ) n ⋅ U n − 1 ( 2 π ξ ) {\displaystyle {\frac {2i}{n}}(-i)^{n}\cdot U_{n-1}(2\pi \xi )\,} ⋅   1 − 4 π 2 ξ 2 rect ⁡ ( π ξ ) {\displaystyle \cdot \ {\sqrt {1-4\pi ^{2}\xi ^{2}}}\operatorname {rect} (\pi \xi )} 2 π i n ( − i ) n ⋅ U n − 1 ( ω ) {\displaystyle {\sqrt {\frac {2}{\pi }}}{\frac {i}{n}}(-i)^{n}\cdot U_{n-1}(\omega )\,} ⋅   1 − ω 2 rect ⁡ ( ω 2 ) {\displaystyle \cdot \ {\sqrt {1-\omega ^{2}}}\operatorname {rect} \left({\frac {\omega }{2}}\right)} 2 i n ( − i ) n ⋅ U n − 1 ( ν ) {\displaystyle {\frac {2i}{n}}(-i)^{n}\cdot U_{n-1}(\nu )\,} ⋅   1 − ν 2 rect ⁡ ( ν 2 ) {\displaystyle \cdot \ {\sqrt {1-\nu ^{2}}}\operatorname {rect} \left({\frac {\nu }{2}}\right)} 関数Jn (x)は、n次の第1種ベッセル関数である。関数Un (x)は第2種チェビシェフ多項式である。下記315316参照 209 sech ⁡ ( a x ) {\displaystyle \operatorname {sech} (ax)\,} π a sech ⁡ ( π 2 a ξ ) {\displaystyle {\frac {\pi }{a}}\operatorname {sech} \left({\frac {\pi ^{2}}{a}}\xi \right)} 1 a π 2 sech ⁡ ( π 2 a ω ) {\displaystyle {\frac {1}{a}}{\sqrt {\frac {\pi }{2}}}\operatorname {sech} \left({\frac {\pi }{2a}}\omega \right)} π a sech ⁡ ( π 2 a ν ) {\displaystyle {\frac {\pi }{a}}\operatorname {sech} \left({\frac {\pi }{2a}}\nu \right)} 双曲線正割自分自身フーリエ変換したものである

※この「自乗可積分函数」の解説は、「フーリエ変換」の解説の一部です。
「自乗可積分函数」を含む「フーリエ変換」の記事については、「フーリエ変換」の概要を参照ください。

ウィキペディア小見出し辞書の「自乗可積分函数」の項目はプログラムで機械的に意味や本文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。 お問い合わせ


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「自乗可積分函数」の関連用語

自乗可積分函数のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



自乗可積分函数のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの自乗可積分函数 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。
ウィキペディアウィキペディア
Text is available under GNU Free Documentation License (GFDL).
Weblio辞書に掲載されている「ウィキペディア小見出し辞書」の記事は、Wikipediaのフーリエ変換 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。

©2025 GRAS Group, Inc.RSS