積測度
積測度
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/10/22 10:57 UTC 版)
X と Y が測度を伴う測度空間であるなら、それらの積に関する積測度を定義するいくつかの自然な方法が存在する。 測度空間の(圏論の意味での)積 X×Y は、それらの可測な部分集合の積 A×B によって生成されるσ代数をその可測集合として持つ。X×Y 上の測度 μ は、可測部分集合 A および B に対して μ(A×B)=μ(A)μ(B) を満たすとき、積測度と呼ばれる。一般に X×Y 上には多くの異なる積測度が存在しうる。フビニの定理とトネリの定理はいずれも、この問題を解決するための技術的な条件を必要としている。その最も一般的な方法として、すべての可測空間は σ-有限であると仮定する方法がある。この場合、X×Y 上の積測度は唯一つとなる。また、可測集合の測度が、可測集合の積の可算個の合併であるような集合の測度の下限で与えられる場合、X×Y 上には常に唯一つの極大積測度(maximal product measure)が存在する。その極大積測度は、可測集合の積によって生成される集合の環上で μ(A×B)=μ(A)μ(B) を満たすような加法的函数 μ に対してカラテオドリの拡張定理を適用することで構成できる。 二つの完備距離空間の積は通常、完備ではない。例えば、単位区間 I 上のルベーグ測度の積は、平方 I×I 上のルベーグ測度ではない。完備測度に対するフビニの定理の変化版も存在し、そこでは不完備な測度の積の代わりにその積の完備化が用いられる。
※この「積測度」の解説は、「フビニの定理」の解説の一部です。
「積測度」を含む「フビニの定理」の記事については、「フビニの定理」の概要を参照ください。
- 積測度のページへのリンク