特徴と制御
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/05/15 04:12 UTC 版)
これは、モーターの電機子を制御するチョッパ装置の他に、並列する形でモーターの分巻界磁を制御する4つのチョッパ装置を、分巻界磁を接続したブリッジ回路に取付けており、「前進力行」「前進ブレーキ」「後進力行」「後進ブレーキ」の4つの運転モードの切替えを、4つのチョッパ装置で連続かつ円滑に行うことができる方式である。 チョッパ制御の最終形態であり、搭載するチョッパ装置の所要数が多くなるが、抵抗器や可動接点部品の大幅な削減ができるほか、無接点で主回路の切り換えもないことから、保守の低減が可能となっている。 このチョッパ装置が開発が可能になったのは高耐圧、大容量の電力用半導体であるGTOサイリスタが開発されたことが大きな理由とされている。 チョッパ装置の素子に高速スイッチング特性に優れたGTOサイリスタを採用することで、従来のチョッパ装置のチョッピング速度を3倍 - 4倍に高めた高周波チョッパが可能となる(チョッパ周波数を660Hzから2,000Hz以上に高周波化)。このため、従来はモーターに流れる電流を確保するために必要であった「主平滑リアクトル」が不要となる。さらに従来のサイリスタでは力行とブレーキ時(回生ブレーキ時)で回路を逆転させるための「転換器」が必要とされていた。しかし、高周波分巻チョッパ(4現象チョッパ)ではこの装置が不要となり、かつ、従来のサイリスタで電流を遮断するために必要であった「転流回路」も、GTOサイリスタの採用により不要となった。加えて、チョッパ装置の心臓部であるゲート制御装置に、当時最新のマイコン技術を使用し、従来のチョッパ装置と比較して大幅な小形軽量化が可能となった(帝都高速度交通営団車両部 1989)。。 粘着性能は分巻電動機の特性に適した電機子と界磁を別々なチョッパ装置で制御を行うため、、従来のチョッパ車の粘着値である16.8%から18%台へ向上された。さらに従来のAVF(自動可変界磁制御)式チョッパ制御と比較して床下艤装スペースで65%、機器重量は71%と約30%の小形軽量化が実現されている。
※この「特徴と制御」の解説は、「電機子チョッパ制御」の解説の一部です。
「特徴と制御」を含む「電機子チョッパ制御」の記事については、「電機子チョッパ制御」の概要を参照ください。
- 特徴と制御のページへのリンク