平方根の求め方
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2016/09/08 16:41 UTC 版)
ここでは例として 46785399 の平方根を求める。開平算を用いるときにまずすることは、小数点を基準にして二桁ずつに数字を分けることである。いまの場合 46|78|53|99 となる。 これは偶数桁でちょうど 2つずつに分かれたが、奇数桁の場合は最上位が 1つになる。例えば 27183の場合は 2|71|83 となる。整数ではなく小数部を持つ数の場合も小数点を基準にして 2桁ずつにわける。133.1415 であれば、 1|33.|14|15 と分ける。 最上位の区分の 46 に着目し 46 以下の平方数で最も大きいものを探すと 62 = 36 である。この 6 が平方根の最上位の数字になる。下図の中央にある筆算で赤い 6がこれにあたる。赤い四角で囲んだ 46 の下に 36 と書き引き算して 10 が得られる。次のブロックの 78 (青色の枠)を下ろしてきて 1078 とする。 ここでネイピアの骨を使う。赤い 6 の 2 倍、すなわち 12 ( 1 の棒と 2 の棒)を基盤に並べる。さらに右端に 平方数の棒を加えたものが下図の左上の基盤 1 である。各行を計算した値が右端に書いてある。 1078 以下で最も大きな数である行を探すと 8行目の 1024 が見つかる。これを 1078 の下に書き引き算を行い、 54を得る。このときの行数の 8 が平方根の次の桁の値(青色)になる。次のブロックの 53 (緑色の枠)を下ろしてきて 5453 とする。 1 の基盤に並べた 12 を 10 倍して 120。いま得た平方根の 2 桁目の値 8 を 2 倍して 16。これらを足して 120 + 16 = 136。この値が下図の右上の 2a の基盤になる。さらに平方数の棒を右端に並べ左下の 2bの基盤になる。 2b の基盤にも各行を計算した値が書いてある。この値の中から 5453 以下で最も大きい数を探すと 3行目に 4089が見つかる。これを 5453 の下に書き引き算をして 1364 を得る。この時の行数である 3 が平方根の次の桁の数字(緑色)になる。 以下は同じことの繰り返しをする。 99 (桃色の枠)を下ろしてきて、 136499 を得る。 基盤 2b で用いた 136 を 10 倍し、今、新たに得た平方根の値 3 (緑色)を 2 倍し両者を足すと 136×10 +3×2 = 1366 を得る。 1366 を基盤に並べ平方数の棒を右端に添えると下図の右下にある基盤 3 のようになる。 136499 以下で最も大きい数を基盤 3 から探すと 9 行目の 123021 が見つかり、136499 の下に書いて引き算をすると 13478 を得る。この時の行数である 9 が平方根の次の桁の数字になる。 以上の計算により 46785399 ≒ 6839. ⋯ {\displaystyle {\sqrt {46785399}}\fallingdotseq 6839.\cdots } ということが分かる。
※この「平方根の求め方」の解説は、「ネイピアの骨」の解説の一部です。
「平方根の求め方」を含む「ネイピアの骨」の記事については、「ネイピアの骨」の概要を参照ください。
- 平方根の求め方のページへのリンク