定量的アプローチ
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/02/18 09:04 UTC 版)
分子のエネルギー準位の定量的な値を得るため、配置間相互作用 (CI) 拡張がfull CI限界に向かって速く収束するような分子軌道が必要とされる。このような関数を得るための最も一般的な手法が、分子軌道をフォック演算子の固有関数として表現するハートリー-フォック法である。この方法は通常、原子核を中心としたガウス関数の線形結合として分子軌道を表現することによってこの問題を解く。これらの線形結合の係数を求める問題はローターン方程式として知られる一般固有値問題であり、つまりハートリー-フォック方程式の特定の表現である。MOの量子化学計算を行うことができる多くのプログラムがある(例: Spartan、HyperChem)。 単純な説明では、実験的分子軌道エネルギーは原子価軌道に対する紫外光電子分光法と内殻軌道に対するX線光電子分光法によって得ることができることがしばしば示唆される。しかしながら、これらの実験はイオン化エネルギー(分子と1電子を取り除くことで得られるイオンの一つとの間のエネルギー差)を測定しているため不正確である。イオン化エネルギーはクープマンズの定理によって軌道エネルギーと近似的に関連づけられている。これら2つの値がよく一致する分子もあれば、非常に悪い場合もある。
※この「定量的アプローチ」の解説は、「分子軌道」の解説の一部です。
「定量的アプローチ」を含む「分子軌道」の記事については、「分子軌道」の概要を参照ください。
- 定量的アプローチのページへのリンク