ビオチンへの高い親和性の起源
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/09/15 15:10 UTC 版)
「ストレプトアビジン」の記事における「ビオチンへの高い親和性の起源」の解説
多数のストレプトアビジン-ビオチン複合体の結晶構造は、並外れた親和性の起源の解明に役立ってきた。第一に、結合部位とビオチンとの間には高い形状相補性が存在する。第二に、ビオチンが結合部位中に存在する時には大規模な水素結合ネットワークが存在する。結合部位中の残基から直接的に作られる水素結合が8本(いわゆる水素結合の「第一殻」)存在する(Asn23、Tyr43、Ser27、Ser45、Asn49、Ser88、Thr90、Asp128が関与)。また、第一殻残基と相互作用する残基が関与する水素結合の「第二殻」も存在する。しかし、ストレプトアビジンとビオチンの親和性は水素結合相互作用だけから予測されるものを超えており、高い親和性に寄与する別の機構の存在が示唆されている。ビオチン結合ポケットは疎水性であり、このポケット中にビオチンが存在する時には数多くのファンデルワールス力を介した接触と疎水性相互作用が存在する。これが高い親和性の主な原因であるとも考えられている。具体的には、ポケットには保存されたトリプトファン残基が並んでいる。最後に、βストランド3と4を繋ぐ柔軟なループ(L3/4)の安定化がビオチンの結合に付随して起こる。このループは結合したビオチンを覆って閉じ、結合ポケットの蓋のように働き、極めて遅いビオチンの解離速度の一因となる。 ストレプトアビジンに変異を入れるとほとんどの場合、ビオチンに対する結合親和性が低下する。これはこのような高度に最適化された形では予期されることである。しかしながら、traptavidinと命名されたストレプトアビジンの改変変異体は、より高い熱安定性と力学的安定性に加えて、ビオチン解離速度が10倍以上遅いことが明らかにされた。この解離速度の低下に付随して、会合速度の2倍の低下も起こった。
※この「ビオチンへの高い親和性の起源」の解説は、「ストレプトアビジン」の解説の一部です。
「ビオチンへの高い親和性の起源」を含む「ストレプトアビジン」の記事については、「ストレプトアビジン」の概要を参照ください。
- ビオチンへの高い親和性の起源のページへのリンク