コサイクルと連鎖律
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/02/26 03:07 UTC 版)
テンソルの概念のより進んだ説明として、多変数の場合の連鎖律を座標変換に適用するものとして解釈することができて、またテンソルについての自己一貫した要求としてテンソル場が生じてくる。 抽象的に、連鎖律は1-コサイクル(英語版)と同一視される。これは内在的な方法で接束を定義するための一貫した要求を与える。テンソルからなる別のベクトル束は、連鎖律そのものに対するテンソル構成の函手性を適用することにより、比較可能なコサイクルを持つ。このことはこれらが内在的(いわば「自然」)な概念であるかということの理由でもある。 テンソルに対する「古典的」なやり方に従った普通のいい方だとこれは話を逆に進めていることになって、だから本当に基本的な考え方というよりは、経験論的な、因果の誤ったやり方ということになる。座標変換の下でどのように変換するかということによるテンソルの定義にはコサイクル表示の自己一貫性の一種が陰伏的に含まれる。テンソル密度の構成はコサイクルのレベルで「ひねる」ことになる。幾何学者はテンソル「量」の「幾何学的」特性に何の疑いも持たない(この種の天下りな論法は総論を抽象的に正当化する)。
※この「コサイクルと連鎖律」の解説は、「テンソル場」の解説の一部です。
「コサイクルと連鎖律」を含む「テンソル場」の記事については、「テンソル場」の概要を参照ください。
- コサイクルと連鎖律のページへのリンク