局所凸位相ベクトル空間 局所凸位相ベクトル空間の概要

局所凸位相ベクトル空間

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/05/17 17:31 UTC 版)

ナビゲーションに移動 検索に移動

フレシェ空間は、距離化可能かつその距離に関して完備であるような局所凸空間である。それらは、ノルムに関する完備ベクトル空間であるようなバナッハ空間の一般化である。

定義

V を、複素数の部分体 K(通常は C 自身か、実数体 R)上のベクトル空間とする。局所凸空間は、凸集合あるいは半ノルムに関して定義される。

凸集合による定義

V 内のある部分集合 C について、以下が成り立つ:

  1. Cであるとは、C 内の任意の x, y0 ≤ t ≤ 1 に対して、tx + (1 – t)yC 内に含まれることを言う。これを言い換えると、C はその内部の点の間のすべての線分を含むということになる。
  2. C が circled であるとは、C 内の任意の x に対して、|λ| = 1 ならば λxC 内に含まれることを言う。K = R であるなら、このことは C が原点を通るその鏡映と等しいことを意味する。K = C に対しては、このことは C 内の任意の x によって生成される一次元複素部分空間において、x を通る原点中心の円板を C が含むことを意味する。
  3. C が(考えている体が順序付けられている場合に)であるとは、C 内の任意の x0 ≤ λ ≤ 1 に対して、λxC 内に含まれることを言う。
  4. C均衡であるとは、C 内の任意の x に対し、|λ| ≤ 1 であるなら λxC 内に含まれることを言う。K = R であるなら、このことはもし xC 内にあるなら、Cxx の間の線分を含むことを意味する。K = C に対してこのことは、C 内の任意の x が生成する一次元複素部分空間において、原点を中心とし x を境界に置く円板を C が含むことを意味する。また同値であるが、均衡集合は circled な錐である。
  5. C併呑であるとは、すべての t > 0 についての tC の合併が V 全体であること、あるいは同値であるが V 内のすべての x に対し、txC に含まれるようなある t > 0 が存在することを言う。集合 C は、その空間内のすべての点を併呑するために膨張させることが出来る。
  6. C絶対凸であるとは、それが均衡かつ凸であることを言う。

より簡潔に、V のある部分集合が絶対凸であるとは、係数の絶対和が ≤ 1 であるような線型結合の下で閉じていることを言う。そのような集合は、V 全体を張るとき、併呑と呼ばれる。

局所凸位相ベクトル空間とは、原点が絶対凸併呑集合の局所基を持つような位相ベクトル空間のことを言う。平行移動は(位相ベクトル空間の定義より)連続であるため、すべての平行移動は位相同型であり、したがって原点の近傍のすべての基は与えられた任意のベクトルの近傍に対する基へと平行移動することが出来る。

半ノルムによる定義

V 上の半ノルムとは、次を満たす写像 p: VR のことを言う:

  1. p は非負あるいは半正定値。すなわち p(x) ≥ 0
  2. p は正同次あるいは正スケール化可能。すなわち、すべてのスカラー λ に対して p(λx) = |λ|⋅p(x) となる。したがって、特に p(0) = 0 が成り立つ。
  3. p は劣加法的で、次の三角不等式を満たす。p(x + y) ≤ p(x) + p(y)

p が正定値であるなら、すなわち p(x) = 0 のとき x = 0 であるなら、p はノルムである。一般に半ノルムは必ずしもノルムではないが、半ノルムの族に対する類似の性質である分離性(separatedness)が後述のように定義される。

局所凸空間は、半ノルムの {pα}αA に沿ったあるベクトル空間 V として定義される。その空間は自然な位相である、半ノルムの始位相英語版をもたらす。言い換えると、それはすべての写像

が連続であるような最も粗い英語版位相である。この位相に対する y の近傍の基は、次の方法で定義することが出来る:A のすべての有限部分集合 B と、すべての ε > 0 に対して、

を定める。次に注意されたい。

この位相においてベクトル空間の演算が連続であることは、前述の性質 2 および 3 より従う。結果として得られる位相ベクトル空間は、各 UB,ε(0) が絶対凸かつ併呑であるため(特に後者の性質は平行移動に対して保存されるため)、局所凸である。

二つの定義の同値性

近傍基に関する定義はより良い幾何的な表現を与えるものであるが、半ノルムに関する定義は実際に扱う上でより簡単なものとなる。それら二つの定義の同値性は、ミンコフスキー汎函数あるいはミンコフスキーゲージとして知られる構成法によって従う。ε-球の凸性を保証する半ノルムのキーとなる性質は、三角不等式である。

C 内の x に対し、0 ≤ t ≤ 1 ならば txC 内にあるような併呑集合 C を考える。C のミンコフスキー汎函数を次で定義する。

この定義より、C が均衡かつ凸(また仮定より併呑)であるなら、μC は半ノルムとなる。逆に、半ノルムの族が与えられたとき、集合

は凸併呑均衡集合の基を形成する。

さらなる定義と性質

  • 半ノルムの族 {pα}αトータル(total)あるいは分離(separated)であるとは、すべての α に対して pα(x) = 0 が成り立つときは常に x0 となることを言う。局所凸空間がハウスドルフであるための必要十分条件は、それが半ノルムの分離族を持つことである。多くの研究者はハウスドルフの条件を定義に含めている。
  • 擬距離は距離の一般化で、d(x, y) = 0 が成り立つのは x = y の場合に限る、という条件を満たさないものである。局所凸空間が、擬距離によってその位相が生じるという意味で擬距離化可能であるための必要十分条件は、それが可算個の半ノルムの族を持つことである。実際、同一の位相を導く擬距離はこのとき
で与えられる(ここで 1/2n は任意の正の総和可能な列 an で置き換えることが出来る)。この擬距離は平行移動不変であるが、d(kx, ky) ≠ |k|d(x, y) となるという意味で非同次であり、したがって(擬)ノルムを定義することは無い。擬距離が正当な距離であるための必要十分条件は、半ノルムの族が分離であることである。実際そのような場合は、空間がハウスドルフであるときにのみ成り立つからである。さらに空間が完備であるなら、その空間はフレシェ空間と呼ばれる。
  • 局所凸空間内のコーシーネット英語版とは、すべての ε > 0 およびすべての半ノルム pα に対して、λ, μ > κ ならば pα(xλxμ) < ε を満たす κ が存在するようなあるネット {xκ}κ のことを言う。言い換えると、そのようなネットはすべての半ノルムについて同時にコーシー的でなければならない。距離化可能なフレシェ空間とは異なり、一般の空間は非可算の擬距離の族によって定義されることもあり得るため、ここでの完備性の定義は、を使ったより有名なものの代わりにネットを使って行う。定義により、可算であるような列はそのような空間において収束を特徴付ける上で十分ではない。局所凸空間が完備一様空間であるための必要十分条件は、すべてのコーシーネットが収束することである。
  • 半ノルムの族が関係 pαpβ の下で前順序となるための必要十分条件は、すべての x に対して pα(x) ≤ Mpβ(x) となるようなある M > 0 が存在することである。その族が結びとして加法を伴う有向集合であるなら、言い換えるとすべての α および β に対して pα + pβpγ を満たす γ が存在するなら、その族は半ノルムの有向族(directed family of seminorms)と呼ばれる。すべての半ノルムの族は、同一の位相を定義するという意味で同値な有向族を持つ。実際、与えられた族 {pα}αI に対して、I の有限部分集合からなる集合を Φ とすると、Φ 内のすべての F に対して
が定義される。{qF}F ∈ Φ は同値な有向族であることが確かめられる。
  • 空間の位相が単一の半ノルムによって導かれるなら、その空間は半ノルム化可能(seminormable)と言われる。有限の半ノルムの族を伴う任意の局所凸空間は半ノルム化可能である。さらに空間がハウスドルフ(族が分離される)なら、その空間は半ノルムの和によって与えられるノルムによってノルム化可能である。開集合に関して、局所凸位相ベクトル空間が半ノルム化可能であるための必要十分条件は、0有界な近傍を持つことである。



「局所凸位相ベクトル空間」の続きの解説一覧



英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「局所凸位相ベクトル空間」の関連用語

局所凸位相ベクトル空間のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



局所凸位相ベクトル空間のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの局所凸位相ベクトル空間 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS