太陽フレア 地球への影響・被害

太陽フレア

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/02/23 21:42 UTC 版)

地球への影響・被害

太陽フレアに伴いプラズマが惑星空間に放出される様子。2011年7月7日。SDOによる撮影。

フレアが発生すると、多くのX線ガンマ線高エネルギー荷電粒子が発生し、太陽表面では速度1000km/s程度で伝播距離50万kmにも及ぶ衝撃波が生じる事もある[25]。またフレアに伴い、太陽コロナ中の物質が惑星間空間に放出されることがある(コロナ質量放出 )。高エネルギー荷電粒子が地球に到達すると、デリンジャー現象、磁気嵐、オーロラ発生の要因となる。さらに、大規模なフレアの発生により太陽風が爆発的に放出されて太陽嵐となり、地球上や人工衛星などに甚大な被害を及ぼす恐れがある。

2003年には、大規模なフレアが頻発し、デリンジャー現象により、地球上の衛星通信無線通信に多くの悪影響を与えた。また、地球磁気圏外では、フレア時のX線、ガンマ線による被曝により、人の致死量を超えることもある。

フレアの活動は、太陽活動周期や黒点の蝶形図(コロナの蝶形図)によって、関係付けを説明されることもしばしばある。

フレア時の高エネルギー荷電粒子の地球への到達、あるいは、フレアの発生そのものを観測・予報することは宇宙天気予報と呼ばれ、太陽研究者にとって重要課題となっている。

フレアによる放出物とその影響・範囲[26][27]
放出物 影響範囲 地球への到達時間 主な影響
電磁波(電波バースト) 地球電離層 光速度(8分程度=観測と同時) X線などの作用で電離層D層の密度が増大、短波(HF)通信の障害(デリンジャー現象)を引き起こす[28]
高エネルギー粒子(太陽プロトン現象 宇宙空間(地球磁気圏外)、極域・高緯度の地球電離層 30分程度 - 数日[注 1] 地球磁気圏に捉えられた陽子電子の作用で放射線帯の放射線量が上昇、宇宙活動を行う人間や高高度を飛ぶ航空機への影響、人工衛星の障害を引き起こす。また、極域・高緯度地域では陽子・電子が大気に突入してD層の密度が増大、短波通信の障害を引き起こす[29]
プラズマコロナ質量放出 地球磁気圏内 2日後 - 1日後位[注 2] 南向き磁場をもつプラズマが磁気圏との相互作用で流入、オーロラや地表の磁気嵐を引き起こす。また電離層の密度減少(電離圏嵐)による通信障害も引き起こす[30]

電子機器への影響

太陽嵐が起こると、8分程度で電磁波が地球に到達して電波障害が生じ、数時間で放射線が到達。数日後にはコロナからの質量放出が地球に届き、誘導電流送電線に混入し、電力系統がおかしくなる。ただ単に停電するのではなく、電機・電子系統に瞬断やEMP(電磁パルス)被害が出る。特に宇宙空間にある衛星(通信衛星GPS衛星気象衛星偵察衛星など)や、巨大なアンテナとして働く送電線の被害が起こる。

100年に一度の頻度で発生する極端な宇宙天気現象(エクストリーム・イベント)によって次のような被害が生ずると考えられる。[31]

通信・レーダー

HF(短波)は発生直後から2週間に渡り断続的に使えなくなる。VHF・UHFは2週間に渡り昼間使えなくなる。携帯電話も昼間使えなくなる。L帯を用いる衛星通信も2週間断続的に使えなくなる。同様にレーダーも使えなくなる。

衛星測位

断続的に数十mの誤差、ないし測位不能の状態になる。

衛星

帯電により多くの衛星が機能の一部ないし全てを喪失する。太陽電池が大幅に劣化する。空気抵抗の増大で低軌道の衛星の運用寿命が極端に短くなる・落下する。軌道が乱れデブリの発生リスクが増大する。

発電所・送電網

保護装置が誤作動し大規模停電になる。日本のように多くの国で変電に交流方式がとられているため、太陽フレアによりいわば直流の地磁気誘導電流が過大に発生すると、一部変圧器が加熱して損傷する。

これ以外にも想像していない被害に見舞われる恐れも有る。原発等においても、全電源喪失に陥る事態も考えられる。

これらの被害により生産、輸送、インフラの多くが連鎖的に機能喪失、膨大な二次被害が生じる。被害の全容を想定する手法は定性的にも定量的にも確立されていない。

実例

被害の実例としては、カナダケベック州で大停電を引き起こした1989年3月の磁気嵐や、人工衛星「あすか」の機能停止(2000年)、小惑星探査機はやぶさにダメージが生ずる(2003年11月4日X28フレア)などがある。

2022年2月にスターリンク衛星が49機まとめて打ち上げられたが、うち40機が空気抵抗の増大で落下し失われた。[32]

衛星観測が始まって以来のフレア等級で過去最大だったのは、2003年11月4日のフレアである。このときはGOES衛星でX28を記録したことが報じられたが[33]、後に電離層への影響から更に大きいX45相当であったとする研究も報告されている[34]

太陽以外の恒星で度々観測される超巨大なフレアを「スーパーフレア」と呼び、太陽でも過去に起き、今後も発生する可能性があると警告する研究者もいる。屋久杉年輪などに痕跡が残る「775年の宇宙線飛来」発生源についての仮説の一つでもある[2][35]

2008年、全米科学アカデミーは『激しい宇宙気象――その社会的・経済的影響の把握』という題の報告書を発表した[36]。書面では、強力な太陽フレアが地球の磁場を混乱させ、強力な電流によって高圧変圧器が故障し、大規模な停電を引き起こす恐れについて指摘されている。もしそうなれば、米国だけで最初の1年間で1兆〜2兆ドルの被害が出て、完全復旧には4年〜10年かかることが予測される[37]。大型の変圧器は調達に年単位の時間がかかり、電力網が世界規模で破壊された場合に生産はほとんど出来ないとされる。また超高圧送電線の敷設にも時間がかかる[38]


注釈

  1. ^ エネルギー準位の高い粒子は最速100,000km/s程度と速く到達し、低い粒子は遅く到達するため、幅がある。
  2. ^ 噴出直後は平均で300km/s、最速3,000km/sになるが、低速太陽風との衝突によりやや緩和される。地球への到達は平均で2日後、早い場合は1日後 - 14時間後位とされる。また、空間的に広がりがあり、遅いものでは先端が到達してから24 - 36時間位継続する。
  3. ^ NOAA Space Weather Scales。Rスケールのほかに、太陽放射の嵐(太陽プロトン現象, Solar radiation storms)の強度を表すSスケール、磁気嵐の強度を表すのはGスケールがある

出典

  1. ^ 粟野諭美・福江純(共編)『最新 宇宙学-研究者たちの夢と戦い』(裳華房ポピュラーサイエンス261)p.4
  2. ^ a b “(科学の扉)「想定外」を考える/スーパーフレアの襲来 電子機器を破壊、世界的大停電も”. 『朝日新聞』朝刊. (2017年7月2日). http://www.asahi.com/articles/DA3S13014970.html 
  3. ^ NHK. “太陽フレアで大規模通信障害!?現代に与える深刻な影響とは - 記事”. 明日をまもるナビ - NHK. 2023年5月27日閲覧。
  4. ^ 「プロキシマ・ケンタウリの巨大フレアをアルマ望遠鏡が観測」(2018年2月26日)
  5. ^ Benz, Arnold O. (2016-12-09). “Flare Observations” (英語). Living Reviews in Solar Physics 14 (1): 2. doi:10.1007/s41116-016-0004-3. ISSN 1614-4961. https://doi.org/10.1007/s41116-016-0004-3. 
  6. ^ 科学技術政策研究所シンポジウム 近未来への招待状 第二部 柴田一成「太陽活動と宇宙天気予報」講演資料
  7. ^ 小特集 高強度レーザーを用いた実験室宇宙物理 7.MHDプラズマ
  8. ^ a b Phillips, Dr. Tony (2014年7月23日). “Near Miss: The Solar Superstorm of July 2012”. NASA. http://science.nasa.gov/science-news/science-at-nasa/2014/23jul_superstorm/ 2014年7月26日閲覧。 
  9. ^ Staff (2014年4月28日). “Video (04:03) - Carrington-class coronal mass ejection narrowly misses Earth”. NASA. 2014年7月26日閲覧。
  10. ^ Moreton, G. F. (1964-01-01). “Hα Shock Wave and Winking Filaments with the Flare of 20 September 1963.”. The Astronomical Journal 69: 145. doi:10.1086/109375. ISSN 0004-6256. https://ui.adsabs.harvard.edu/abs/1964AJ.....69Q.145M. 
  11. ^ Hey, J. S. (1983-01-01). The radio universe. https://ui.adsabs.harvard.edu/abs/1983raun.book.....H 
  12. ^ Peterson, L. E.; Winckler, J. R. (1959-07). “Gamma-ray burst from a solar flare” (英語). Journal of Geophysical Research 64 (7): 697–707. doi:10.1029/JZ064i007p00697. http://doi.wiley.com/10.1029/JZ064i007p00697. 
  13. ^ Carmichael, H. (1964-01-01). “A Process for Flares”. NASA Special Publication 50: 451. https://ui.adsabs.harvard.edu/abs/1964NASSP..50..451C. 
  14. ^ Sturrock, P. A. (1966-08-01). “Model of the High-Energy Phase of Solar Flares”. Nature 211: 695–697. doi:10.1038/211695a0. ISSN 0028-0836. https://ui.adsabs.harvard.edu/abs/1966Natur.211..695S. 
  15. ^ Hirayama, T. (1974-02-01). “Theoretical Model of Flares and Prominences. I: Evaporating Flare Model”. Solar Physics 34: 323–338. doi:10.1007/BF00153671. ISSN 0038-0938. https://ui.adsabs.harvard.edu/abs/1974SoPh...34..323H. 
  16. ^ Kopp, R. A.; Pneuman, G. W. (1976-09-01). “Magnetic reconnection in the corona and the loop prominence phenomenon.”. Solar Physics 50: 85–98. doi:10.1007/BF00206193. ISSN 0038-0938. https://ui.adsabs.harvard.edu/abs/1976SoPh...50...85K. 
  17. ^ 柴田一成、研究トッピクス (5)太陽フレアと恒星フレアの統一モデル『京都大学大学院理学研究科附属天文台年次報告』1999年(平成11年) p.13
  18. ^ 太陽面爆発 (フレア) の謎に挑む 日本天文学会 (PDF)
  19. ^ Tsuneta, Saku; Naito, Tsuguya (1998-03-01). “Fermi Acceleration at the Fast Shock in a Solar Flare and the Impulsive Loop-Top Hard X-Ray Source”. The Astrophysical Journal 495: L67–L70. doi:10.1086/311207. ISSN 0004-637X. https://ui.adsabs.harvard.edu/abs/1998ApJ...495L..67T. 
  20. ^ Nishizuka, Naoto; Shibata, Kazunari (2013-01-30). “Fermi Acceleration in Plasmoids Interacting with Fast Shocks of Reconnection via Fractal Reconnection”. Physical Review Letters 110 (5): 051101. doi:10.1103/PhysRevLett.110.051101. https://link.aps.org/doi/10.1103/PhysRevLett.110.051101. 
  21. ^ Kong, Xiangliang; Guo, Fan; Shen, Chengcai; Chen, Bin; Chen, Yao; Giacalone, Joe (2020-12-01). “Dynamical Modulation of Solar Flare Electron Acceleration due to Plasmoid-shock Interactions in the Looptop Region”. The Astrophysical Journal Letters 905 (2): L16. doi:10.3847/2041-8213/abcbf5. ISSN 2041-8205. https://iopscience.iop.org/article/10.3847/2041-8213/abcbf5. 
  22. ^ 国立天文台、宇宙航空研究開発機構ひので: 今サイクル初の巨大フレアを観測」2011年3月11日付、2013年5月16日閲覧
  23. ^ a b c Tamrazyan, Gurgen P. (1968). “Principal Regularities in the Distribution of Major Earthquakes Relative to Solar and Lunar Tides and Other Cosmic Forces”. ICARUS (Elsevier) 9: 574–592. Bibcode1968Icar....9..574T. doi:10.1016/0019-1035(68)90050-X. 
  24. ^ a b Tandberg-Hanssen, Einar; Emslie, A. Gordon (1988年). “The physics of solar flares” 
  25. ^ 太陽フレアに伴う衝撃波『京都大学大学院理学研究科附属天文台年次報告』2002年(平成14年)p.27
  26. ^ 研究分野紹介 II-01 太陽フレア」地球電磁気地球惑星圏学会、2017年9月11日閲覧
  27. ^ 太陽・地磁気活動及び電波擾乱現象の解説」情報通信研究機構 太陽地球環境情報サービス、2017年9月11日閲覧
  28. ^ "Solar flares radio blackouts"、Space Weather Prediction Center of National Oceanic and Atmospheric Administration(アメリカ海洋大気庁 宇宙天気予報センター)、2017年9月11日閲覧
  29. ^ "Solar radiation storm"、Space Weather Prediction Center of National Oceanic and Atmospheric Administration(アメリカ海洋大気庁 宇宙天気予報センター)、2017年9月11日閲覧
  30. ^ "Coronal mass ejections"、Space Weather Prediction Center of National Oceanic and Atmospheric Administration(アメリカ海洋大気庁 宇宙天気予報センター)、2017年9月11日閲覧
  31. ^ 宇宙天気の警報基準に関するWG 報告:最悪シナリオ”. 総務省. 2022年5月17日閲覧。
  32. ^ 日本放送協会. “宇宙天気警報 太陽フレアの被害を防げ”. 解説委員室ブログ. 2022年5月17日閲覧。
  33. ^ SOHO Hotshots”. Sohowww.nascom.nasa.gov. 2012年5月21日閲覧。
  34. ^ Biggest ever solar flare was even bigger than thought | SpaceRef – Your Space Reference”. SpaceRef (2004年3月15日). 2012年5月21日閲覧。
  35. ^ 柴田一成『太陽 大異変 スーパーフレアが地球を襲う日』(朝日新書
  36. ^ Severe Space Weather Events--Understanding Societal and Economic Impacts:A Workshop Report
  37. ^ 強力な太陽嵐で2012年に大停電? 対抗策は:WIRED.jp” (2009年4月28日). 2021年2月27日閲覧。
  38. ^ ナショナルジオグラフィックチャンネル> 地球を襲う宇宙の嵐 危険な太陽風
  39. ^ 西塚直人 (2017年5月19日). “機械学習とビッグデータで、太陽フレアと宇宙天気を予測する! | academist Journal”. 2023年5月27日閲覧。
  40. ^ 草野教授らが電磁流体力学理論に基づく大型太陽フレアの予測に関する論文をScience誌に出版しました。名古屋大学 宇宙地球環境研究所総合解析研究部(2020年8月10日閲覧)
  41. ^ a b NOAA Space Weather Scales」、Space Weather Prediction Center of National Oceanic and Atmospheric Administration(アメリカ海洋大気庁 宇宙天気予報センター)、2017年9月11日閲覧
  42. ^ a b 宇宙天気予報」情報通信研究機構 宇宙天気情報センター、2017年9月11日閲覧
  43. ^ 過去の大きなフレア(1975年以降)”. 情報通信研究機構宇宙天気情報センター. 2018年6月10日時点のオリジナルよりアーカイブ。2017年9月11日閲覧。
  44. ^ Top 50 solar flares”. SpaceWeatherLive.com (Parsec vzw). 2022年10月3日閲覧。





英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「太陽フレア」の関連用語

太陽フレアのお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



太陽フレアのページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの太陽フレア (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS