近似細分割手法
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2017/05/28 10:00 UTC 版)
「サブディビジョンサーフェス」の記事における「近似細分割手法」の解説
Catmull–Clark subdivision (1978)は任意のポリゴンメッシュに適用できる。すなわち、制御メッシュは四角形に限らず、三角形や五角形などが混在していても良い。ただし、生成されるポリゴンメッシュは四角形のみで構成される。極限曲面は一様双3次B-spline曲面を一般化したものになり、特異点を除いてC2連続が保証される。特異点においてはC1連続を満たす(Peters and Reif 1998)。また、Stamが提案した手法(1998)により、極限曲面をパラメータ化することができる。これにより、分割を繰り返すことなく、極限曲面をパラメトリック曲面として扱うことが可能である。名称は開発者のエドウィン・キャットマル(現ピクサー社長)およびジム・クラーク(SGI・ネットスケープ創業者)に由来する。後にピクサーにおいて頂点ウェイトで形状制御する手法が追加され、2012年よりオープンソースのライブラリ「OpenSubDiv」が公開されて多くの3DCGソフトウェアで採用されている。 Doo–Sabin subdivision (1978)は、細分割曲線生成手法であるChaikin's corner-cutting methodの考えを曲面に応用したものである。極限曲面は一様双2次B-spline曲面を一般化したものになり、どのような制御メッシュであってもC1連続となる。 Loop subdivision (1987)は三角形で構成されたポリゴンメッシュに適用できる。分割して生成されるポリゴンメッシュの面も三角形になる。極限曲面はは4次のBox-splineを一般化したもので、特異点を除いてC2連続を満たし、特異点においてはC1連続が保証される。また、極限曲面をパラメトリック曲面として扱う手法(Stam 1999)が存在する。
※この「近似細分割手法」の解説は、「サブディビジョンサーフェス」の解説の一部です。
「近似細分割手法」を含む「サブディビジョンサーフェス」の記事については、「サブディビジョンサーフェス」の概要を参照ください。
- 近似細分割手法のページへのリンク