累乗数とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > 累乗数の意味・解説 

累乗数

(累乗和 から転送)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/03/15 05:14 UTC 版)

クイゼネールロッド英語版を用いた累乗数4、8、9のデモンストレーション

累乗数(るいじょうすう、: perfect power)とは、他の自然数累乗になっている自然数、すなわち、mkm, k は自然数で k2 以上)の形の数を指す。

累乗数を 1 から小さい順に列記すると

1, 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 81, 100, 121, 125, 128, 144, 169, 196, 216, 225, 243, 256, 289, 324, 343, 361, 400, 441, 484, 512, 529, 576, 625, 676, 729, 784, 841, 900, 961, 1000, …(オンライン整数列大辞典の数列 A001597

累乗数の性質

4 を法として 2 と合同でない数は 2 つの累乗数の差として表される。実際、(n + 1)2n2 = 2n + 1, (n + 2)2n2 = 4n + 4 が成立する。

また、2 = 33 − 52, 10 = 133 − 37 など、4 を法として 2 と合同な数(単偶数)に関しても累乗数の差として表せる場合があることが知られている。6, 14, 34 などがそのように表せるかどうかは知られていない。

差が 1 となる累乗数の組は (8, 9) のみであると、1844年カタラン英語版 (Eugène Charles Catalan) によって予想され(カタラン予想)、2002年プレダ・ミハイレスクによって証明された。

一般に、累乗数を小さいほうから a1 = 1, a2 = 4, … と並べるとき、ai + 1aii と共に無限大に発散すると予想されている(Pillai)。この予想は、任意の自然数 a に対して方程式 xnym = a は有限個の自然数解(x > 0, y > 0, m ≥ 2, n ≥ 2)しかないことと同値である。Chudnovsky はこれを証明したと主張したが、本当に証明されたのかは不明である。エルデシュai + 1ai > ic となる正の定数 c が存在すると予想している。

方程式 xnym = a(a は与えられた自然数, x > 0, y > 0, m ≥ 2, n ≥ 2)は a のほかにもう一つの変数を固定すれば、有限個の解しか存在しないことが知られている。m, n のいずれかを固定した場合には、Schinzel と Tijdeman の一般的な不定方程式 ym = P(x) に関する結果から従い、x, y のいずれかを固定した場合には一般の線形循環数列に関する Shorey と Tijdeman の結果から従う。

3, 7, 8, 15, … など、1 を除く累乗数から 1 を引いた数の逆和は、1 になる。すなわち、

因数分解による分類約数和による分類約数が多いものアリコット数列関連
位取り記法に基づくもの
その他



英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

カテゴリ一覧

すべての辞書の索引



Weblioのサービス

「累乗数」の関連用語











累乗数のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



累乗数のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの累乗数 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2025 GRAS Group, Inc.RSS