束 (束論)
(束 (代数的構造) から転送)
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/03/17 09:58 UTC 版)
ナビゲーションに移動 検索に移動![]() | この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。2022年3月) ( |
数学における束(そく、英語: lattice)は、任意の二元集合が一意的な上限(最小上界、二元の結びとも呼ばれる)および下限(最大下界、二元の交わりとも呼ばれる)を持つ半順序集合である。それと同時に、ある種の公理的恒等式を満足する代数的構造としても定義できる。二つの定義が同値であることにより、束論は順序集合と普遍代数学の双方の領域に属することとなる。さらに、半束 (semilattice) の概念は束の概念を含み、さらにハイティング代数やブール代数の概念も含む。これら束に関連する構造は全て順序集合としても代数系としても記述することができるという特徴を持つ。
定義
半順序集合として
半順序集合 (L, ≤) が束であるとは、以下の二条件が満足されるときに言う。
- 二元の結びの存在
- L の任意の二元 a, b に対して、二元集合 {a, b} が結び(上限、最小上界、和) a ∨ b を持つ。
- 二元の交わりの存在
- L の任意の二元 a, b に対して、二元集合 {a, b} が交わり(下限、最大下界、積) a ∧ b を持つ。
これにより、∨ および ∧ は L 上の二項演算となる。最初の条件は L が結び半束 (join-semilattice) となることを主張するものであり、後の条件は L が交わり半束 (meet-semilattice) となることをいうものである。二つの演算はその順序に関して単調である。すなわち、a1 ≤ a2 かつ b1 ≤ b2 ならば
束には二項演算がふたつあることから、一方が他方に対して分配的かということを考えるのは自然な問いである。すなわち、束 L の各元 a, b, c に対して、互いに双対的な次の等式
- ∨ の ∧ に対する分配性
- a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c).
- ∧ の ∨ に対する分配性
- a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c).
が成り立つかということを考える。これらは等式
- (a ∧ b) ∨ (b ∧ c) ∨ (c ∧ a) = (a ∨ b) ∧ (b ∨ c) ∧ (c ∨ a)
が成り立つこととも同値である[3]。束が最初の等式を(従って、束にとって同値な後の等式も)満足するならば、分配束 (distributive lattice) と呼ばれる。束が分配的である必要十分条件は M3 もしくは N5 (右図)と同型な部分束を含まないことである[4][5]。集合束(ring of sets)は分配的であり、逆に任意の分配束は集合束と同型である(Birkhoffの表現定理[6])。
完備束に対して相性のよい分配性の狭義の概念というものを考えれば、完備ハイティング代数や完備分配束といったもっと特別のクラスを定義することができる。
モジュラー性
応用に際して、分配性条件は強すぎる制約となることがあり、次のようなより弱い性質を考えると便利なことがよくある。束 (L, ∨, ∧) がモジュラー (modular) であるとは L の各元 a, b, c に対して
- モジュラー恒等式
- (a ∧ c) ∨ (b ∧ c) = [(a ∧ c) ∨ b] ∧ c
が成立するときにいう。この条件は次の条件と同値である。
- モジュラー律
- a ≤ c ならば a ∨ (b ∧ c) = (a ∨ b) ∧ c.
束がモジュラーである必要十分条件は N5(右図)と同型な部分束を含まないことである[7][8]。分配束はモジュラーだが、分配束とは限らないモジュラー束の例として、加群の部分加群全体の成す束や、群の正規部分群全体の成す束が挙げられる。
半モジュラー性
モジュラー性でも強すぎるときに(上)半モジュラーと呼ばれる次のような性質を課すことがある。 束 L が (上)半モジュラー ((upper)semimodular) であるとは
- 半モジュラー律
- a ∧ b <: a ならば b <: a ∨ b。
が成立するときにいう。ただしここで a <: b とは b が a を被覆する、すなわち a < b であり a < c < b となるような c が存在しないこと。
上半モジュラーの双対概念を下半モジュラーという。 モジュラー束は上及び下半モジュラーだが逆は一般には成立しない。しかし有限束などでは両者は一致する。
半モジュラーの更なる一般化として 弱半モジュラー (weakly semimodular) 又はバーコフ条件と言われる以下の条件がある
- バーコフ条件
- a ∧ b <: a かつ a ∧ b <: b ならば a <: a ∨ b かつ b <: a ∨ b。
任意の半モジュラー束は弱半モジュラー束である。
連続束と代数束
領域理論において、半順序集合の元を「より単純な」元によって近似することを考えるのは自然である。それによって、任意の元がその元のずっと下にある元の成す有向集合の上限として得られるような半順序集合からなる連続的半順序集合のクラスが導かれる。ここでさらに有向集合を得るのに使える元をコンパクト元に制限することを考えるならば、代数的半順序集合が得られる。これらの概念を束に対しても考えれば、
- 連続束 (continuous lattice): 半順序集合として連続的な完備束
- 代数束 (algebraic lattice): 半順序集合として代数的な完備束
のクラスが得られるが、これらはいずれも興味深い性質を持つクラスである。例えば連続束は、ある種の恒等式を満足する(項数有限な)演算をもつ代数的構造として特徴付けられる。一方、代数束の同じような特徴づけは知られていないが、「統語論的」("syntactical") には、Scott information systemを通じて記述できる。
補元と擬補元
L が最大元 1 と最小元 0 を持つ有界束とする。L の二元 x および y が互いに他の補元 (complements) であるとは
ウィキメディア・コモンズには、束 (束論)に関連するメディアがあります。 - Weisstein, Eric W. "Lattice". MathWorld (英語).
- J.B. Nation, Notes on Lattice Theory, unpublished course notes available as two PDF files.
- Ralph Freese, "Lattice Theory Homepage".
「束 (代数的構造)」の例文・使い方・用例・文例
- 束 (代数的構造)のページへのリンク