回転体とは? わかりやすく解説

Weblio 辞書 > 同じ種類の言葉 > 人文 > 幾何学 > 立体 > 回転体の意味・解説 

回転体

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/12/10 08:18 UTC 版)

ナビゲーションに移動 検索に移動
曲線の回転。その表面は回転面を成し、その囲む領域が回転体である。

数学工学および製造業における回転体(かいてんたい、: solid of revolution)は、適当な平面曲線を同平面内の直線回転の軸英語版として回転させることにより得られる立体図形である。

母線となる曲線が軸と交わらないものとすれば、回転体の体積表面積中心軌跡英語版によって記述される円周長さとの積に等しい(パップスの第二中心軌跡定理)。

代表円板 (representative disk) は回転体の三次元体素を言う。この体素は回転の軸から r 単位離れた位置にある長さ w線素回転させることによって得られ、従って πr2w 単位の円筒体積を囲む。

求積法

回転体の体積の求積法には、円板分割と円筒分割の大きく二つがよく用いられる。これらの方法を適用するために、対象のグラフを描くことが最も平易である。グラフの面積を回転軸の周りに回転させたものと見るとき、体積を求めるには図形を厚み δx の薄い円板形か、厚み δx の薄い円筒殻に切り分けて、それらの体積の和の δx → 0 なる極限をとればよく、その値は適当な積分によって評価されることになる。

円板法

y-軸に関する円板分割積分 (disk integration)

円板法(円板分割法)では回転体を回転軸に垂直にスライスし、軸に平行に積分する。

曲線 f(x), g(x) と直線 x = a, x = b の囲む面積を x-軸の周りに回転させてできる回転体の体積は

バウムクーヘン積分 (shell integration)

円筒分割(年輪法)は回転体を回転軸と平行にスライスし、軸に垂直に積分する。

曲線 f(x), g(x) と直線 x = a, x = b の囲む面積を y-軸の周りに回転させた回転体の体積は

ウィキメディア・コモンズには、回転体に関連するカテゴリがあります。

脚注

[脚注の使い方]

外部リンク





回転体と同じ種類の言葉

このページでは「ウィキペディア」から回転体を検索した結果を表示しています。
Weblioに収録されているすべての辞書から回転体を検索する場合は、下記のリンクをクリックしてください。
 全ての辞書から回転体 を検索

英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「回転体」の関連用語

回転体のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



回転体のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの回転体 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2025 GRAS Group, Inc.RSS