可逆な古典的論理ゲート
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/07/07 09:25 UTC 版)
一般に、NOTゲート以外の古典的コンピュータの基本論理ゲートは不可逆演算であり、入力から出力にかけて情報が失われる。たとえば2入力ANDゲートにおいて出力ビットが0であったという結果のみから、それが01, 10, 00のどの入力ビットの組み合わせから得られたものなのか知ることは不可能である。 ただし、古典的コンピュータにおいても、NOTゲートに代表されるように、任意の長さのビット列に対して可逆ゲートを構成することができないわけではない。理想的には、可逆ゲートは情報の損失と物理学的エントロピーの増加に伴う電力消費や熱損失の問題を生じないため、応用面でも関心が寄せられている。一般に可逆ゲートは、ビット列を入力として受け取り、同じ長さのビット列を出力する可逆な関数として表される。長さnのビット列は、0と1だけで構成される文字列x1x2 ... xn∈{0,1}nとして表現され、このようなビット列は全部で2n通り存在する。 より厳密には、可逆ゲートとは、ビット列の集合{0,1}nから自身への全単射写像fとして表現される。このような可逆ゲートfの例としては、たとえば入力に定められた置換を適用する写像などが挙げられる。現在、こうした置換を用いて可逆な古典的論理ゲートを構成する手法は、真偽表などを用いて簡単に表現できる範囲の小さいn(例: n = 1, 2, 3)についてのみ研究されている。
※この「可逆な古典的論理ゲート」の解説は、「量子回路」の解説の一部です。
「可逆な古典的論理ゲート」を含む「量子回路」の記事については、「量子回路」の概要を参照ください。
- 可逆な古典的論理ゲートのページへのリンク