測度論 歴史

測度論

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/03/26 15:17 UTC 版)

歴史

歴史的に微分積分学で扱うことのできた素朴な意味での体積(一般には多次元の体積)は、リーマン積分を用いて表され、有限加法的であった。1902年アンリ・ルベーグは彼の学位論文『積分、長さ、体積』("Intégrale, longueur, aire") において測度の概念を確立する。これにより新たに定義された"体積"は、完全加法的であることを積極的に要求したため、極限概念との親和性が高く、そのためリーマン積分(とジョルダン測度)による場合よりも多くの集合に体積の定義が可能となった。これが測度論の始まりである。

形式的定義

形式的に、集合 X の部分集合からなる完全加法族 A 上で定義される可算加法的測度 μ とは拡張された区間 [0, ∞] に値を持つ(つまり、無限大も許す非負値の)関数であって、次の性質を満たすもののことである:

  1. 空集合の測度は 0 である。
  2. 完全加法性(可算加法性):E1, E2, E3, ...どの二つも互いに共通部分を持たない A に属する集合の列ならば

A可測集合 (measurable sets) と呼ばれる。 また、数学的構造 (X, A, μ )測度空間 (measure space) と呼ばれる。次の性質は、上の定義から導かれるものである:

  • 単調性E1E2 が可測集合で E1E2 を満たすならば、
  • E1, E2, E3, ... が可測集合の列で、各 n において EnEn+1 ならば、En たちの和集合は可測で
  • E1, E2, E3, ... が可測集合の列で、各 n において EnEn+1 ならば、En たちの共通部分も可測である。さらに、少なくとも 1 つの n について En の測度が有限値であるならば

σ-有限測度

測度空間 Ω が有限であるというのは、μ (Ω) が有限値であることである。また、Ω が測度有限なる可測集合の可算和で表されるとき、Ωσ -有限であるという。測度空間に属する集合は、それが測度有限なる可測集合の可算和であるとき σ -有限測度を持つという。

例えば、実数全体の集合に標準ルベーグ測度を考えた測度空間は σ -有限であるが、有限ではない。実際に、任意の整数 k に対して 閉区間 [k , k + 1] を考えると、これらは可算個であり、それぞれ測度 1 であって、和集合を考えれば実数直線を尽くす。

対して、実数全体の集合に数え上げ測度を考える。これは、実数からなる有限集合に、その集合に入る点の数を対応させるものである。この測度空間は σ -有限でない。なぜなら、どの測度有限な集合も有限個の点しか持たないのであって、その可算個の和集合は高々可算であるので、非可算集合である数直線を被覆し尽くすことができないからである。

σ -有限な測度空間は非常によい性質を持っている; σ -有限性は位相空間の可分性になぞらえることができる.


  1. ^ 測度論の「お気持ち」を最短で理解する https://qiita.com/mo-mo-666/items/731bf1d58a7720aa7739 測度論の「お気持ち」を最短で理解する - Qiita]






固有名詞の分類


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「測度論」の関連用語

測度論のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



測度論のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの測度論 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS