G-被覆
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/05/30 08:01 UTC 版)
G を位相空間 X 上の離散群(discrete group)の群作用とする。どのような条件のときに X から軌道 X/G への射影が被覆写像となるかとの問いは自然である。作用は不動点を持っているかもしれないので、これはいつの正しいとは限らない。例えば、(x, y) ↦ (y, x) というツイスト作用により、積 X × X 上への作用が、恒等元ではない位数 2 の巡回群が例である。このように X と X/G の基本群の間の関係の研究は、そうまっすぐには進めない。 しかしながら、群 G は X の基本グルーポイド(groupoid)上へ作用し、グルーポイド上への対応する群と対応する軌道を考えることで、最もうまく扱える。この理論は、以下の書籍 Topology and groupoids の第 11 章で定式化され、主要な結果は、普遍被覆を持つハウスドルフ空間 X 上の群 G の離散的作用に対し、軌道空間 X/G の基本グルーポイドは、X の基本グルーポイドの軌道グルーポイド、つまり、群 G の作用によるグルーポイドの商空間と同型ということである。これは計算を明確化し、例えば、空間の対称的な二乗積空間の基本群の計算に使われる。
※この「G-被覆」の解説は、「被覆空間」の解説の一部です。
「G-被覆」を含む「被覆空間」の記事については、「被覆空間」の概要を参照ください。
- G-被覆のページへのリンク