線対称性とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 活用形辞書 > 線対称性の意味・解説 

線対称性

日本語活用形辞書はプログラムで機械的に活用形や説明を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。 お問い合わせ

線対称

(線対称性 から転送)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/08/29 13:40 UTC 版)

正三角形とその対称軸のうちの一本

線対称(せんたいしょう、: line symmetry)は、図形を特徴づける性質の1つで、ある直線を軸として図形を反転させると自らと重なり合う対称性である。その直線を対称軸という。

各次元の線対称

線対称の最も一般的な性質は、高次元のものである。2次元では、それに2次元特有の性質が加わる。

2次元

点線はそれぞれの図形の対称軸を表す。右下の図形は線対称ではない

2次元図形の線対称は、反射対称(英:reflection symmetry)と同じものである。reflection symmetryを線対称と訳すことも多い。なおその場合、3次元図形のreflection symmetryは面対称と訳す。

対称軸を境に図形を2つの部分に分け、一方を折り返すともう一方に重なる。対称軸は、折り返したときに互いに重なる2つの点を結んだ線分垂直二等分線である。対称軸は複数本存在する場合もある。

対称軸を境に2つに分割した図形は互いに合同である。異なる全ての対称軸は1点で交わり、その交点は図形の重心である。一般に対称軸を偶数本もしくは無数に持つ図形は点対称でもあり、その図形を重心を中心に180°回転させるともとの図形と完全に重なる。いっぽう対称軸を奇数本もつ図形は点対称ではない。

関数 y = f(x) のグラフy 軸を対称軸とする線対称なものであることと、f(x) が偶関数であることは同値である。

3次元

3次元図形の線対称は、2回対称に等しい。

なお、2次元図形の線対称も、その図形を3次元図形と見なしたときの2回対称である。

4次元以上

n次元(n ≧ 4)図形が線対称であるとは、対称軸に直交する各 n - 1 次元空間内において、対称軸との交点を中心とした点対称が成立していることである。

なお、2次元・3次元図形の点対称も、この定義の特殊例である。

線対称な図形として代表的なもの

xy平面上にy=f(x)の形で偶関数のグラフを描くと、y軸を対称軸とする線対称な図形になる。

図形名(対称軸の本数、対称軸が通る点)

2次元

  • (無限、中心
  • n角形n 本、正奇数角形は各頂点と重心、正偶数角形は各頂点・辺心と重心)
  • 二等辺三角形(1本、頂角の頂点と底辺の中点)
  • 長方形(2本、対辺の各中点)
  • 菱形(2本、対角の各頂点)
  • 凧形(1本、互いにの大きさが異なる対角の各頂点)
  • 等脚台形(1本、平行な2辺の各中点)
  • 扇形(1本、中心角のある点との中点)
  • 楕円(2本、中心と焦点。あるいは2つの焦点から等距離にある異なる2点)

3次元

関連項目



英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「線対称性」の関連用語

線対称性のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



線対称性のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの線対称 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2025 GRAS Group, Inc.RSS