様々な問題の定式化
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/11/28 14:11 UTC 版)
数学者は一般的には完全な随伴関手の概念を必要としているわけではない。彼らの解こうとしている問題にあっているかや証明に必要かどうかで必要な概念かどうかを判定している。圏論の初期段階である1950年代にはこれらの動機に大きく引っ張られていた。アレクサンドル・グロタンディークの時代になって、圏論は他の仕事における指針として使われるようになった。はじめは関数解析とホモロジー代数であり最終的には代数幾何で使用された。 彼が随伴関手の概念を分離したというのはおそらく誤っているといえるが、随伴の特別な役割についてグロタンディーク固有の認識はあった。例えば、彼の著名な業績のひとつに、相対型のセール双対性、くだいていうと、代数多様体の連続な族に関するセール双対性がある。この証明の全体は結局のところある関手の右随伴が存在するかということになる。これは完全に抽象的で非構成的であるが、それなりに強力でもある。
※この「様々な問題の定式化」の解説は、「随伴関手」の解説の一部です。
「様々な問題の定式化」を含む「随伴関手」の記事については、「随伴関手」の概要を参照ください。
- 様々な問題の定式化のページへのリンク