弦理論の非摂動的定式化
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/12/28 02:54 UTC 版)
「AdS/CFT対応」の記事における「弦理論の非摂動的定式化」の解説
場の量子論では、摂動論のテクニックを使った様々な物理学的な事象の確率の計算が典型的である。20世紀前半にリチャード・ファインマンやその他の人により開拓された摂動的場の量子論は、ファインマン図形と呼ばれる特別な図形を使用し、計算を体系的に行う。これら図形は、点のような粒子とそれらの相互作用を描いていると想定できる。 この定式化は、結果を予言をすることに極めて有用である。にもかかわらず、これらの予言は、相互作用の強さである結合定数が信頼に足りうるに十分小さな場合、単に相互作用のない場合に近いときのみ、有効であるに過ぎない。 弦理論の出発点は、場の量子論の点のような粒子は弦と呼ばれる 1次元の対象としてモデル化することができるというアイデアである。弦の相互作用は、普通の場の量子論で使われる摂動論を一般化することで、直接、定義される。ファインマン図形のレベルで、このことは点粒子の経路を表している 1次元図形を、弦の運動を表現する 2次元の曲面に置き換えることを意味する。場の量子論とは異なり、弦理論はいまだに完全な非摂動的な定義が与えられていないので、物理学者が答えたい多くの理論的な問題が、未解決となっている。 弦理論の非摂動的定式化を開拓する問題は、AdS/CFT対応の研究のもともとの動機の一つであった。 上で説明したように、AdS/CFT対応は、反ド・ジッター空間の上の弦理論に等価な場の量子論の例をいくつか提供する。見方を変えると、重力場が漸近的に反ド・ジッター空間となる特別なとき(重力場が空間の無限遠点で反ド・ジッター空間の場となっている)には、このAdS/CFT対応が、弦理論の定義を与えていると見ることも可能である。弦理論で物理的に興味の対象となる量は、双対な場の量子論の量の項で定義される。
※この「弦理論の非摂動的定式化」の解説は、「AdS/CFT対応」の解説の一部です。
「弦理論の非摂動的定式化」を含む「AdS/CFT対応」の記事については、「AdS/CFT対応」の概要を参照ください。
- 弦理論の非摂動的定式化のページへのリンク