内挿法の選択
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2020/10/02 21:10 UTC 版)
内挿のもたらす結果は、平滑化や最小自乗近似と似ているが、これらは全く違ったものである。内挿は、ある区間の間に成り立つ関数モデルや境界条件を仮定し、その関数のパラメータのうちのいくつか(または全て)を決定する。このため、入力数値データ列には誤差が含まれないか、無視できると仮定している。一方、平滑化や最小自乗近似は誤差が含まれる数値データ列の関係をもっともらしく推定する数列や関数モデルを与える。 物理現象を測定したデータを入力とする内挿では、その物理現象に適用できるもっともらしい内挿法を選択することが必要である。しばしば、そうした測定値やコンピュータアニメーションにおけるキャラクターの運動などで線形補間や多項式補間が好まれて適用されるのは、単にアルゴリズムのソフトウェアへの実装が容易で計算機負荷が少ないというだけでなく、多くの物理現象を表す関数がテイラー展開可能であり、その高次の項が無視できるほど小さいと仮定できるからである。 そうでない場合は、適した内挿法を選択する必要がある。
※この「内挿法の選択」の解説は、「内挿」の解説の一部です。
「内挿法の選択」を含む「内挿」の記事については、「内挿」の概要を参照ください。
- 内挿法の選択のページへのリンク