代数的構造以外の構造
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2018/01/10 05:18 UTC 版)
詳細は「射 (圏論)」を参照 位相群や順序体など、代数的構造以外に付加的な構造を持つ代数系において準同型写像と呼ぶべきものは、単に抽象代数系としての準同型になっているということだけではなく、付加された構造をも考慮したものをとるのが普通である。 たとえば位相空間の構造を持つならば準同型は連続写像である。同型写像に当たるものは全単射かつ両連続な写像であり、それは同相写像 (homeomorphism) あるいは位相同型写像 (homeomorphic isomorphism) と呼ばれる。同様に、順序構造が付加されている代数系の準同型は単調写像(順序を保つ写像・順序を逆にする写像)であり、同型写像は全単射な単調写像、順序同型(順序を保つ同型・順序を逆にする同型)と呼ばれる性質を持つものを言うのである。また一方で、単なる集合を演算を持たない代数系と思えば、その間の準同型は単に写像であるということになるし、集合の中に特定の点(基点)を固定して構造として付加したものと考えるなら、基点を持つ集合の間の準同型は、基点を基点にうつす写像である。 これらの付加的な構造のいくつかは、台集合(にいくつか集合演算を施したもの)のある性質を保つ部分集合族として構造が特徴付けられ、したがって台集合上の写像に対して構造の上の写像が引き起こされるという状況を考えうるところは代数系における演算と同様である。この引き起こされた写像が適当な意味で構造を保つ、構造と可換であるということが準同型と呼ばれることのある所以である。本質的には、準同型写像とは特定の数学的構造のなす圏における射 (morphism) になっているような写像のことであると言ってよい(もちろん一般の圏ではその対象は集合とは限らないし、その射が写像であるとも限らない)。準同型を射のことととらえるならば代数系に考察を限る必要はない。
※この「代数的構造以外の構造」の解説は、「準同型」の解説の一部です。
「代数的構造以外の構造」を含む「準同型」の記事については、「準同型」の概要を参照ください。
- 代数的構造以外の構造のページへのリンク