代数幾何学と解析幾何学
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2023/01/01 20:57 UTC 版)
![]() | 原文と比べた結果、この記事には多数の(または内容の大部分に影響ある)誤訳があることが判明しています。情報の利用には注意してください。 |
数学において、代数幾何学と解析幾何学(だいすうきかがくとかいせききかがく、フランス語: Géometrie Algébrique et Géométrie Analytique、略称: GAGA)[注 1]は密接な関係にある。代数幾何学は代数多様体を研究するのに対して、解析幾何学は複素多様体やより一般的に多変数の(複素)解析函数のゼロ点で局所的に定義された解析空間を扱う。これら2つの深い関係は、代数的なテクニックを解析空間へ適用したり、逆に解析的テクニックを代数多様体へ適用したりする上で応用されている。
主要な結果
X を複素射影代数多様体とする。X は複素多様体であるので、複素数の点 X(C) はコンパクト複素解析空間の構造を持ち、Xan と表わされる。同様に、
Weblioに収録されているすべての辞書から代数幾何学と解析幾何学を検索する場合は、下記のリンクをクリックしてください。

- 代数幾何学と解析幾何学のページへのリンク