リー環の拡大とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > リー環の拡大の意味・解説 

リー環の拡大

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2018/01/08 05:54 UTC 版)

リー群論,リー環論,およびそれらの表現論において,リー環の拡大 (Lie algebra extension) e とは,与えられたリー環 g を別のリー環 h によって「拡大」することである.拡大はいろいろな方法で生じる.2つのリー環の直和を取ることによって得られる自明な拡大 (trivial extension) がある.別の種類の拡大は分裂拡大 (split extension) や中心拡大 (central extension) である.拡大は,例えば射影群表現英語版からリー環を作るときに,自然に生じる.そのようなリー環は中心電荷を持つ. w 有限次元単純リー環上の多項式ループ代数から始めて,2つの拡大,中心拡大と微分による拡大を施すと,untwisted アファインカッツ・ムーディ代数に同型なリー環を得る.中心拡大したループ代数を用いて2次元時空のカレント代数英語版を構成できる.ヴィラソロ代数ヴィット代数の普遍中心拡大である[1]

中心拡大は物理学で必要とされる,なぜならば量子化された系の対称性を表す群は通常古典的な対称変換群の中心拡大であり,同様に量子系の対応する symmetry リー環は一般に古典的な symmetry algebra の中心拡大であるからである[2].カッツ・ムーディ代数は統一超弦理論の対称変換群であると予想されている[3].中心拡大されたリー環は場の量子論,特に共形場理論弦理論M理論において,支配的な役割を果たす[4][5]

後半の大部分はリー環の拡大が実際有用である分野である数学と物理学双方での応用の背景資料に割かれている.かっこつきリンク,(背景資料),はそれが有益であろうところで提供される.

歴史

リー対応英語版のため,理論は,したがってリー環の拡大の歴史は,群の拡大の理論と歴史と密接に関係している.群の拡大の系統的な研究はオーストリア数学者オットー・シュライアー英語版 (Otto Schreier) によって1923年の彼の PhD 論文(後に出版)においてなされた[nb 1][6][7]オットー・ヘルダー (Otto Hölder) によってシュライアーの論文のために出された問題は次のものであった:「2つの群 GH が与えられたとき,群 E であって G同型正規部分群 N を持ち剰余群 E/NH と同型であるものをすべて求めよ.」

リー環の拡大は無限次元リー環に対して最も興味深く有用である.1967年ヴィクトル・カッツ (Victor Kac) とロバート・ムーディ英語版 (Robert Moody) は独立に古典的なリー環の概念を一般化し,今ではカッツ・ムーディ代数と呼ばれる無限次元リー環の新しい理論を拓いた[8][9].それらは有限次元単純リー環を一般化し,しばしば拡大として具体的に構成できる[10]

記法と証明

以下では次のような記号の濫用が用いられる:指数写像 exp で引数が与えられたとき eX, 直積 G × H の元 (g, eH)geHH の単位元),リー環の直和でも同様(さらに g + h = (g, h) と書かれる).半直積と半直和についても同様.標準的単射(群とリー環両方)は暗黙の同一視のために用いられる.さらに.G, H, ..., が群であれば,G, H, ..., の元のデフォルトの名前は g, h, ..., であり,それらのリー環は g, h, ... である.g, h, ..., の元のデフォルトの名前は G, H, ... であり(群と同じ!),乏しいアルファベット資源を節約する意味もあるが,主に統一的な表記のためである.

拡大の材料となるリー環は,何も言わずに,同じ上のものが取られる.

総和規約が使われ,上下両方の添え字に関わる場合もある.

警告:以下の証明や証明の概略のすべてが普遍的な有効性を持っているわけではない.主な理由はリー環がしばしば無限次元であるために,リー環に対応するリー群がないかもしれないからである.さらに,そのような群が存在したとしても,「通常の」性質を持っているとは限らず,例えば指数写像があるとは限らず,もしあっても「通常の」性質をすべては持たないかもしれない.そのような場合には,群を「リー群」と呼ぶべきかどうか疑わしい.文献は画一的でない.明示的な例にはたぶん,妥当な構造が適切な位置に書かれる.

定義

リー環の拡大は短完全列を用いて定式化される[1].短完全列とは,長さ3の完全列

拡大の種類

自明

リー環の拡大

写像 ε

が可換になること,すなわち i′ ∘ Ψ = Φ ∘ i, s′ ∘ Φ = s となることをいう.

構成

直和により

g, h を同じ体 K 上のリー環とする.

Murray Gell-Mannは,1969年のノーベル物理学賞受賞者で,1960年代にカレント代数の分野を創始した.それは,Adler–Weisberger sum rule のような,予測を引き出す台となる力学の知識さえなしに,知られている局所的な対称性を開発する.

多項式ループ代数の中心拡大の応用として,量子的場の理論のカレント代数英語版が考えられる(背景).Suppose one has a current algebra, with the interesting commutator being

Robert Moody英語版(左)はカナダの数学者で,カナダ王立協会の Fellow であり,アルバータ大学で働いている.Moody は Victor Kac とともにカッツ・ムーディ代数の co-discoverer である.Kac は MIT で働いているロシアの数学者で,American Mathematical Society の Fellow である.

前の節で 2-コサイクル φ の構成において用いられた導分 d0 は中心拡大された多項式ループ代数,カッツ・ムーディ代数を実現するためここでは g と書く,上の導分 D に拡張できる[14][15]背景).単純に

は可換である,すなわち

エルンスト・ヴィット (1911–1991), ドイツの数学者.ヴィット環は,1930年代に有限体上彼によって研究されたが,最初1909年にカルタンによって複素数の場合に調べられた.

ヴィット代数は,エルンスト・ヴィットに因んで名づけられており,円周 S1 上の滑らかなベクトル場のリー環 VectS1 の複素化である.座標では,そのようなベクトル場は

と書け,リーブラケットはベクトル場のリーブラケットで,S1 上単に次で与えられる:

代数は W = VectS1 + iVectS1 と書かれる.W の基底は次の集合で与えられる:

この基底は次を満たす:

このリー環は有用な中心拡大,ヴィラソロ代数をもつ.それは su(1, 1)sl(2, R) に同型な 3 次元部分代数を持つ.各 n ≠ 0 に対し,集合 {d0, d−n, dn}su(1, 1) ≅ sl(2, R) に同型な部分代数を張る.

射影表現

G行列リー群英語版のとき,リー環の元 G

によって与えることができる,ただし αt = 0 で単位元を通る G 内の微分可能な道である.リー環の元の交換子は2つの道 g1, g2 と群の交換子を用いて計算できる:

同様に,群の表現 U(G) が与えられると,そのリー環 u(g) は次で計算される:

すると gu(g) の間の基底を基底に送りしたがって ug の忠実表現であるようなリー環の同型が存在する.

しかしながら U(G)射影表現英語版,すなわち位相因子を除いた表現ならば,群の表現から計算されるリー環は,g に同型ではない.射影表現において乗法の規則は

である.関数 ω は,しばしば滑らかと仮定されるが,次を満たす:

それは G じょうの 2-コサイクルと呼ばれる.

次が成り立つ:

なぜならば ΩU はともに t = 0 において単位元になるからである.位相因子 ξ の説明は,ウィグナーの定理英語版を参照.g における基底に対する交換関係

u において

となるので, u がブラケットで閉じている(したがって実際にリー環である可能性を持つ)ためには,中心電荷 I が含まれていなければならない.

Relativistic classical string theory

A classical relativistic string traces out a world sheet in spacetime, just like a point particle traces out a world line. This world sheet can locally be parametrized using two parameters σ and τ. Points xμ in spacetime can, in the range of the parametrization, be written xμ = xμ(σ, τ). One uses a capital X to denote points in spacetime actually being on the world sheet of the string. Thus the string parametrization is given by (σ, τ) ↦(X0(σ, τ), X1(σ, τ), X2(σ, τ), X3(σ, τ)). The inverse of the parametrization provides a local coordinate system on the world sheet in the sense of manifolds.

The equations of motion of a classical relativistic string derived in the Lagrangian formalism from the Nambu–Goto action are[29]

A dot over a quantity denotes differentiation with respect to τ and a prime differentiation with respect to σ. A dot between quantities denotes the relativistic inner product.

These rather formidable equations simplify considerably with a clever choice of parametrization called the light cone gauge. In this gauge, the equations of motion become

the ordinary wave equation. The price to be paid is that the light cone gauge imposes constraints,

so that one cannot simply take arbitrary solutions of the wave equation to represent the strings. The strings considered here are open strings, i.e. they don't close up on themselves. This means that the Neumann boundary conditions have to be imposed on the endpoints. With this, the general solution of the wave equation (excluding constraints) is given by

where α' is the slope parameter of the string (related to the string tension). The quantities x0 and p0 are (roughly) string position from the initial condition and string momentum. If all the αμ
n
are zero, the solution represents the motion of a classical point particle.

This is rewritten, first defining

and then writing

In order to satisfy the constraints, one passes to light cone coordinates. For I = 2, 3, ...d, where d is the number of space dimensions, set

Not all αnμ, n ∈ ℤ, μ ∈ {+, −, 2, 3, ..., d} are independent. Some are zero (hence missing in the equations above), and the "minus coefficients" satisfy

The quantitity on the left is given a name,

the transverse Virasoro mode.

When the theory is quantized, the alphas, and hence the Ln become operators.

関連項目

  1. ^ オットー・シュライアー (1901– 1929) は群の拡大の理論の開拓者である.彼の豊富な研究論文とともにレクチャーノートは死後 Einführung in die analytische Geometrie und Algebra (Vol I 1931, Vol II 1935) の名で(Emanuel Sperner英語版により編集され)出版された.後に1951年に英語に Introduction to Modern Algebra and Matrix Theory において翻訳された.さらなる文献は MacTutor 2015 を参照.
  2. ^ ヤコビ恒等式が成り立つことを示すには,one writes everything out, uses the fact that the underlying Lie algebras have a Lie product satisfying the Jacobi identity, and that δ[X, Y] = [δ(X), Y] + [X, δ(Y)].
  3. ^ a b Roughly, the whole Lie algebra is multiplied by i, there is an i occurring in the definition of the structure constants and the exponent in the exponential map (Lie theory) acquires a factor of (minus) i. the main reason for this convention is that physicists like their Lie algebra elements to be Hermitian (as opposed to skew-Hermitian) in order for them to have real eigenvalues and hence be candidates for observables.
  4. ^ ミゲル・アンヘル・ヴィラソロ英語版 (Miguel Ángel Virasoro) は 1940 年生まれのアルゼンチンの物理学者.彼に因んで名づけられているヴィラソロ代数は,最初 Virasoro (1970) で出版された.
  5. ^ 同じ効果は W の基底の変換によって得ることができる.
  6. ^ 2-コサイクルがその値をアーベル群 U(1) に取るとき,すなわちそれが位相因子であるとき,これはウィグナーの定理の文脈では常にそうであるが,構成において C*U(1) でおきかえてもよい.
  7. ^ Bäuerle & de Kerf 1997, Chapter 18. 文献はこの事実と示すのが難しいことを述べている.さらなる文献は与えられていない.Expressions on a slightly different form can be found tough in Tuynman & Wiegerinck (1987) and Bargmann (1954).
  8. ^ これを見るには,式 (4)Ψgg' に適用し,Φ は準同型であることを思い出し,Φg(eG) = eΨg(G) を数回使う.
  9. ^ Aut h) のリー環が Der h, h のすべての導分の集合(それ自身明らかなブラケットによりリー環である)であるという事実は Rossmann 2002, p. 51 において見つけられる.
  10. ^ Since U = −iαaTa and U are constant, they may be pulled out of partial derivatives. The U and U then combine in UU = I by unitarity.
  11. ^ This follows from Gauss law is based on the assumption of a sufficiently rapid fall-off of the fields at infinity.
  12. ^ There are alternative routes to quantization, e.g. one postulates the existence of creation and annihilation operators for all particle types with certain exchange symmetries based on which statistics, Bose–Einstein or Fermi–Dirac, the particles obey, in which case the above are derived for scalar bosonic fields using mostly Lorentz invariance and the demand for the unitarity of the S-matrix. In fact, all operators on Hilbert space can be built out of creation and annihilation operators. See e.g. Weinberg (2002), chapters 2–5.
  13. ^ This step is ambiguous, since the classical fields commute whereas the operators don't. Here it is pretended that this problem doesn't exist. In reality, it is never serious as long as one is consistent.

出典

  1. ^ a b c d Bäuerle & de Kerf 1997
  2. ^ Schottenloher 2008, Introduction.
  3. ^ Dolan 1995 The Beacon of Kac–Moody Symmetry for Physics. (free access)
  4. ^ Green, Schwarts & Witten 1987.
  5. ^ Schottenloher 2008.
  6. ^ Schrier 1926.
  7. ^ Schrier 1925.
  8. ^ Kac & 1967E.
  9. ^ Moody 1967.
  10. ^ Bäuerle & de Kerf 1997, Chapter 19
  11. ^ Bäurle & de Kerf 1990, Chapter 18.
  12. ^ Bäurle & de Kerf 1997, Corollary 22.2.9.
  13. ^ Kac 1990, Exercise 7.8.
  14. ^ Kac 1990.
  15. ^ Bäuerle & de Kerf 1990.
  16. ^ Zwiebach 2004, Chapter 12
  17. ^ Zwiebach 2002, pp. 219–228
  18. ^ Zwiebach 2004, p. 227
  19. ^ Bargmann 1954.
  20. ^ a b Tuynman & Wiegerinck 1987
  21. ^ Rossmann 2002, Section 2.2.
  22. ^ Humphreys 1972.
  23. ^ Knapp 2002.
  24. ^ Weinberg 1996, Appendix A, Ch 15..
  25. ^ Greiner & Reinhardt 1996.
  26. ^ Bauerle & de Kerf 1997, Section 17.5.
  27. ^ Bauerle & de Kerf 1997, pp. 383–386.
  28. ^ Rossmann 2002, Section 4.2.
  29. ^ Zwiebach 2004 Equation 6.53 (supported by 6.49, 6.50).

参考文献

書籍

ジャーナル

ウェブ




英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

カテゴリ一覧

すべての辞書の索引



Weblioのサービス

「リー環の拡大」の関連用語

1
38% |||||



リー環の拡大のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



リー環の拡大のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのリー環の拡大 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2025 GRAS Group, Inc.RSS