モスクワ数学パピルス
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2023/09/24 05:54 UTC 版)

モスクワ数学パピルス(モスクワすうがくパピルス、Moscow Mathematical Papyrus)は、古代エジプトの数学文書。エジプト学者ウラジーミル・セミョーノヴィチ・ゴレニシチェフ(Владимир Семёнович Голенищев, Vladimir Goleniščev)が1893年にエジプトからロシアに持ち帰った。もとはテーベ(現・ルクソール)付近のネクロポリス、ドゥラ・アブ・アル=ナーガ(Dra Abu el-Naga)にあった[1]。ゴレニシチェフが当初所有していたことから ゴレニシチェフ数学パピルス(Golenischev Mathematical Papyrus)とも呼ばれる。その後1911年にモスクワのプーシキン美術館に他の古代エジプト文物とともに寄贈され、今もそこにある。4676番という所蔵番号からモスクワ4676パピルスとも呼ばれる[2]。
ヒエラティックで書かれた古文書であり、エジプト第11王朝時代のものとされている。長さ約5m50cm、幅は4cmから7.5cmで、ソビエト連邦の東洋学者ヴァシーリー・ヴァシーリエヴィチ・シュトルーヴェ(Vasily Vasilievich Struve[3]) が1930年、25の数学問題とその解法ごとに切断した[4]。リンド数学パピルスと共に古代エジプトの数学文書として有名である。モスクワ数学パピルスの方が古いが、リンド数学パピルスの方が大きい[5]。
第10問題: 半球の表面積
モスクワ数学パピルスの第10問題は、半球の表面積を問う問題である。曲面の面積の近似値を求める問題としては最も古い問題の1つである。
次のような例が書かれている。「かご(半球)の(表面積の)計算例。半球の開口部(の直径)は 4 + 1/2(の比率)。表面は? かごは卵形の半分(半球)なので、9の1/9を求める。すなわち1が得られる。(9から引いて)残りを計算すると8。8の1/9を計算する。2/3 + 1/6 + 1/18 が得られる。8からこれを引いた残りを求める。2/3 + 1/6 + 1/18 を引くと 7 + 1/9 が得られる。7 + 1/9 と 4 + 1/2 をかけると32が得られる。これが表面(積)である」[6]
この計算を式に表すと次のようになる(dは直径)。
-
解法は次のように書かれている。「正四角錐台は高さが6、底面の辺が4、上面の辺が2である。4を2乗して16となる。4を2倍して8となる。2を2乗して4となる。16と8と4を足して28を得る。6の1/3を求め2を得る。28を2倍して56を得る。この56が正しい解である」[8]
式で表すと次のようになり、正しい式である。
-
- モスクワ数学パピルスのページへのリンク