グーデルマン関数
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2025/07/14 21:26 UTC 版)
![]() |
この記事は英語版の対応するページを翻訳することにより充実させることができます。(2024年5月)
翻訳前に重要な指示を読むには右にある[表示]をクリックしてください。
|

グーデルマン関数(グーデルマンかんすう、英語: Gudermannian function、ドイツ語: Gudermannfunktion)は、クリストフ・グーデルマン(1798–1852)にちなんで命名された、複素数を用いない三角関数及び双曲線関数と関係する関数である。
定義

定義は以下のとおりである。
-
グーデルマン関数の逆関数(青色)とその漸近線 x = ± π/2 を点線で示したグラフ。 グーデルマン関数の逆関数(逆グーデルマン関数又はランベルト関数と称する)は、区間 において、次のように与えられる[注釈 1]。
→「逆双曲線関数」を参照性質
- グーデルマン関数とその逆関数の原点周りの級数展開は次のとおりである。
- グーデルマン関数とその逆関数の微分は次のとおりである。
- 逆グーデルマン関数は次式のようにフーリエ級数展開できる。
歴史
この関数は、ヨハン・ハインリッヒ・ランベルトによって1760年代に双曲線関数と同じ頃に紹介された。彼はそれを「超越角」(transcendent angle)と呼び、アーサー・ケイリーが1862年に、1830年代のグーデルマンによる特殊関数の理論の功績にちなんで「グーデルマン関数」と呼ぶことを提案するまで、様々な名称で呼ばれてきた[1]。グーデルマンは、幅広い読者に向けてsinhとcosh(同書では と の表記を用いた)を説いた1833年の著書"Theorie der potenzial- oder cyklisch-hyperbolischen functionen"に、クレレ誌で発表した論文を収録した。
グーデルマン関数を表す記号gd は、Philosophical MagazineXXIV巻の19ページ[2]において、ケイリーが正割関数の積分の逆について、gd. uを用いたのが始まりである。ここで、
であり、超越の定義を次のように示した。
よって、それはu の実関数であることが即座に見いだされる。
応用
地球を真球と見立てたとき、メルカトル図法による投影面上における、赤道からの緯線距離についてのグーデルマン関数の関数値は、子午線弧長、すなわち実際の地球上の緯度に相当する。ガウス・クリューゲル図法による地図投影においては、座標換算の中間変数として用いられる正角緯度の導入時においてもグーデルマン関数が現れる[3]。
また、グーデルマン関数は、倒立振子の非周期解に現れる[4]ほか、一般の位置にある2円に対し、反転距離を用いた n 個のシュタイナーの円鎖ができる条件式に現れる。
脚注
注釈
出典
- ^ George F. Becker, C. E. Van Orstrand. Hyperbolic functions. Read Books, 1931. Page xlix.
- ^ Cayley, Arthur (1862). “On the transcendent ”. Philosophical Magazine. 4th Series 24 (158): 19–21. doi:10.1080/14786446208643307 .
- ^ 河瀬和重「Gauss-Krüger投影における経緯度座標及び平面直角座標相互間の座標換算についてのより簡明な計算方法」『国土地理院時報』第121巻、国土地理院、2011年、109–124頁、doi:10.57499/JOURNAL_121_12。
- ^ John S. Robertson, "Gudermann and the Simple Pendulum", The College Mathematics Journal 28:4:271–276 (September 1997) at JSTOR
参考文献
- CRC Handbook of Mathematical Sciences 5th ed. pp. 323–325.
- 坂元左馬太 (1934): グーデルマンの角と實双曲線函數及び指數函數の計算に就て, 土木学会誌, 20(9), 1081–1086
関連項目
外部リンク
- Weisstein, Eric W. “Gudermannian”. mathworld.wolfram.com (英語).
- グーデルマン関数のページへのリンク