Time derivativeとは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > Time derivativeの意味・解説 

時間微分

(Time derivative から転送)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/02/16 13:48 UTC 版)

時間微分(じかんびぶん、: time derivative, derivative with respect to time)とは、引数時間を持つ関数もしくは汎関数の時間に関する導関数、または時間に関する微分そのものを指す。

概要

ある関数の時間微分は、元の関数の時間的な変化の割合を表すので、速度の名を冠することが多い。

例えば物体の運動速度や、化学反応における反応速度などは、それぞれ位置の時間微分と物質量の時間微分を指す。

時間微分は、その対象の時間的な変化の度合いを調べる目的のほかに、元の関数の性質を調べる上で、その導関数の扱いが容易である場合に用いられる。

あるいは、一般の微分方程式と同様に、未知の関数に対する時間発展を時間に関する微分方程式によって与える際に現れる。

数学物理学などにおいては、ある種の変換に対する対称性や不変性がしばしば興味の対象となる。

特に時間変化に対する不変性は重要な意味を持ち、時間微分が恒等的に 0 であるような量は保存量と呼ばれる。このとき元の量は時間的変化に対して不変である。

ネーターの定理に示唆されるように、保存量やそれを与える保存則は、が備える基本的な性質の反映であると考えられるので、自然科学の分野において基礎となるモデルを考える上で重要である。

記法

一般の導関数と同様に、時間微分は様々な微分の記法によって表されるが、物理学では慣習的に、時間微分を表す記法としてニュートンの記法を用いることが好まれる。

ニュートンの記法とは、ある関数の導関数を元の関数の上にドットをつけることで表す方法のことである。

例えば q の時間微分を ·q、さらに時間微分したものは ··q と表される。

力学における時間微分

ニュートン力学ラグランジュ力学においては、基本変数として位置と、その時間微分である速度を用いる。速度を時間微分したものを加速度、さらに時間微分したものを躍度(加加速度)と呼ぶ。

ハミルトン力学においては、物理量

この項目は、物理学に関連した書きかけの項目です。この項目を加筆・訂正などしてくださる協力者を求めていますプロジェクト:物理学Portal:物理学)。


「Time derivative」の例文・使い方・用例・文例

Weblio日本語例文用例辞書はプログラムで機械的に例文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「Time derivative」の関連用語


2
50% |||||






8
2% |||||


Time derivativeのお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



Time derivativeのページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの時間微分 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。
Tanaka Corpusのコンテンツは、特に明示されている場合を除いて、次のライセンスに従います:
 Creative Commons Attribution (CC-BY) 2.0 France.
この対訳データはCreative Commons Attribution 3.0 Unportedでライセンスされています。
浜島書店 Catch a Wave
Copyright © 1995-2025 Hamajima Shoten, Publishers. All rights reserved.
株式会社ベネッセコーポレーション株式会社ベネッセコーポレーション
Copyright © Benesse Holdings, Inc. All rights reserved.
研究社研究社
Copyright (c) 1995-2025 Kenkyusha Co., Ltd. All rights reserved.
日本語WordNet日本語WordNet
日本語ワードネット1.1版 (C) 情報通信研究機構, 2009-2010 License All rights reserved.
WordNet 3.0 Copyright 2006 by Princeton University. All rights reserved. License
日外アソシエーツ株式会社日外アソシエーツ株式会社
Copyright (C) 1994- Nichigai Associates, Inc., All rights reserved.
「斎藤和英大辞典」斎藤秀三郎著、日外アソシエーツ辞書編集部編
EDRDGEDRDG
This page uses the JMdict dictionary files. These files are the property of the Electronic Dictionary Research and Development Group, and are used in conformance with the Group's licence.

©2025 GRAS Group, Inc.RSS